Skip to main content

Advertisement

Log in

Vγ9Vδ2 T cell-based immunotherapy in hematological malignancies: from bench to bedside

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Many hematological malignancies consist of tumor cells that are spontaneously recognized and killed by Vγ9Vδ2 T cells. These tumor cells generate high amounts of intracellular phosphorylated metabolites mimicking the natural ligands and display a wide range of stress-induced self-ligands that are recognized by Vγ9Vδ2 T cells via TCR-dependent and TCR-independent mechanisms. The intrinsic features of Vγ9Vδ2 T cells and that of tumor cells of hematological origin constitute an ideal combination from which to develop Vγ9Vδ2 T cell-based immune interventions. In this review, we will discuss the rationale, preclinical and clinical data in favor of this therapeutic strategy and the future perspectives of its development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Landgren O, Kyle RA (2007) Multiple myeloma, chronic lymphocytic leukaemia and associated precursor diseases. Br J Haematol 139:717–723

    Article  PubMed  CAS  Google Scholar 

  2. Shanafelt TD, Ghia P, Lanasa MC, Landgren O, Rawstron AC (2010) Monoclonal B-cell lymphocytosis (MBL): biology, natural history and clinical management. Leukemia 24:512–520

    Article  PubMed  CAS  Google Scholar 

  3. Dhodapkar MV, Geller MD, Chang DH, Shimizu K, Fujii S, Dhodapkar KM, Krasovsky J (2003) A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med 197:1667–1676

    Article  PubMed  CAS  Google Scholar 

  4. Girlanda S, Fortis C, Belloni D, Ferrero E, Ticozzi P, Sciorati C, Tresoldi M, Vicari A, Spies T, Groh V, Caligaris-Cappio F, Ferrarini M (2005) MICA expressed by multiple myeloma and monoclonal gammopathy of undetermined significance plasma cells costimulates pamidronate-activated gd lymphocytes. Cancer Res 65:7502–7508

    Article  PubMed  CAS  Google Scholar 

  5. Zenz T, Mertens D, Küppers R, Döhner H, Stilgenbauer S (2010) From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer 10:37–50

    PubMed  CAS  Google Scholar 

  6. Mariani S, Muraro M, Pantaleoni F, Fiore F, Nuschak B, Peola S, Foglietta M, Palumbo A, Coscia M, Castella B, Bruno B, Bertieri R, Boano L, Boccadoro M, Massaia M (2005) Effector gammadelta T cells and tumor cells as immune targets of zoledronic acid in multiple myeloma. Leukemia 19:664–670

    PubMed  CAS  Google Scholar 

  7. Burjanadzé M, Condomines M, Reme T, Quittet P, Latry P, Lugagne C, Romagne F, Morel Y, Rossi JF, Klein B, Lu ZY (2007) In vitro expansion of gamma delta T cells with anti-myeloma cell activity by Phosphostim and IL-2 in patients with multiple myeloma. Br J Haematol 139:206–216

    Article  PubMed  Google Scholar 

  8. Thedrez A, Sabourin C, Gertner J, Devilder MC, Allain-Maillet S, Fournié JJ, Scotet E, Bonneville M (2007) Self/non-self discrimination by human gammadelta T cells: simple solutions for a complex issue? Immunol Rev 215:123–135

    Article  PubMed  CAS  Google Scholar 

  9. Maniar A, Zhang X, Lin W, Gastman BR, Pauza CD, Strome SE, Chapoval AI (2010) Human gammadelta T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement. Blood 116:1726–1733

    Article  PubMed  CAS  Google Scholar 

  10. Fisch P, Malkovsky M, Braakman E, Sturm E, Bolhuis RL, Prieve A, Sosman JA, Lam VA, Sondel PM (1990) γδ T cell clones and natural killer cell clones mediate distinct patterns of non-major histocompatibility complexrestricted cytolysis. J Exp Med 171:1567–1579

    Article  PubMed  CAS  Google Scholar 

  11. Fisch P, Malkovsky M, Kovats S, Sturm E, Braakman E, Klein B, Voss SD, Morrissey LW, De Mars R, Welch WJ (1990) Recognition by human Vγ9/Vδ2 T cells of a GroEL homolog on Daudi Burkitt’s lymphoma cells. Science 250:1269–1273

    Article  PubMed  CAS  Google Scholar 

  12. Fisch P, Meuer E, Pende D, Rothenfuber S, Viale O, Kock S, Ferrone S, Fradelizi D, Klein G, Moretta L, Rammensee HG, Boon T, Coulie P, van der Bruggen P (1997) Control of B cell lymphoma recognition via natural killer inhibitory receptors implies a role of human Vγ9/Vδ2 T cells in tumor immunità. Eur J Immunol 27:3368–3379

    Article  PubMed  CAS  Google Scholar 

  13. Sturm E, Braakman E, Fisch P, Vreugdenhil RJ, Sondel P, Bolhuis RL (1990) Human Vγ9-Vδ2 T cell receptor-γδ lymphocytes show specificity to Daudi Burkitt’s lymphoma cells. J Immunol 145:3202–3208

    PubMed  CAS  Google Scholar 

  14. Street SE, Hayakawa Y, Zhan Y, Lew AM, MacGregor D, Jamieson AM, Diefenbach A, Yagita H, Godfrey DI, Smyth MJ (2004) Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and gammadelta T cells. J Exp Med 199:879–884

    Article  PubMed  CAS  Google Scholar 

  15. Selin LK, Stewart S, Shen C, Mao HQ, Wilkins JA (1992) Reactivity of γδT cells induced by the tumour cell line RPMI 8226: functional heterogeneity of clonal populations and role of GroEL heat shock proteins. Scand J Immunol 36:107–117

    Article  PubMed  CAS  Google Scholar 

  16. Zheng B, Lam C, Im S, Huang G, Luk W, Lau S, Yau KS, Wong CK, Yao K, Ng MH (2001) Distinct tumour specificity and IL-7 requirements of CD56- and CD56+ subsets of human gd T Cells. Scand J Immunol 53:40–48

    Article  PubMed  CAS  Google Scholar 

  17. Kato Y, Tanaka Y, Miyagawa F, Yamashita S, Minato N (2001) Targeting of tumor cells for human γδ T cells by nonpeptide antigens. J Immunol 167:5092–5098

    PubMed  CAS  Google Scholar 

  18. Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G (2003) Human T cell receptor γδ cells recognized endogenous mevalonate metabolites in tumor cells. J Exp Med 19:163–168

    Article  Google Scholar 

  19. Tanaka Y, Morita CT, Nieves E, Brenner MB, Bloom BR (1995) Natural and synthetic non-peptide antigens recognized by human gd T cells. Nature 375:155–158

    Article  PubMed  CAS  Google Scholar 

  20. Jomaa H, Feurle J, Luhs K, Kunzmann V, Tony HP, Herderich M, Wilhelm M (1999) Vg9/Vd2 T cell activation induced by bacterial low molecular mass compounds depends on the 1-deoxy-d-xylulose 5-phosphate pathway of isoprenoid biosynthesis. FEMS Immunol Med Microbiol 25:371–378

    PubMed  CAS  Google Scholar 

  21. Espinosa E, Belmant C, Pont F, Luciani B, Poupot R, Romagné F, Brailly H, Bonneville M, Fournié JJ (2001) Chemical synthesis and biological activity of bromohydrin pyrophosphate, a potent stimulator of human gamma delta T cells. J Biol Chem 276:18337–18344

    Article  PubMed  CAS  Google Scholar 

  22. Tanaka Y, Kobayashi H, Terasaki T, Toma H, Aruga A, Uchiyama T, Mizutani K, Mikami B, Morita CT, Minato N (2007) Synthesis of pyrophosphate-containing compounds that stimulate Vgamma2Vdelta2 T cells: application to cancer immunotherapy. Med Chem 3:85–99

    Article  PubMed  CAS  Google Scholar 

  23. D’Asaro M, La Mendola C, Di Liberto D, Orlando V, Todaro M, Spina M, Guggino G, Meraviglia S, Caccamo N, Messina A, Salerno A, Di Raimondo F, Vigneri P, Stassi G, Fourniè JJ, Dieli F (2010) Vgamma9Vdelta2 T lymphocytes efficiently recognize and kill zoledronate-sensitized, imatinib-sensitive, and imatinib-resistant chronic myelogenous leukemia cells. J Immunol 184:3260–3268

    Article  PubMed  Google Scholar 

  24. Kato Y, Tanaka Y, Tanaka H, Yamashita S, Minato N (2003) Requirement of species-specific interactions for the activation of human gamma delta T cells by pamidronate. J Immunol 170:3608–3613

    PubMed  CAS  Google Scholar 

  25. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  PubMed  CAS  Google Scholar 

  26. Harwood HJ Jr, Alvarez IM, Noyes WD, Stacpoole PW (1991) In vivo regulation of human leukocyte 3-hydroxy-3-methylglutaryl coenzyme A reductase: increased enzyme protein concentration and catalytic efficiency in human leukemia and lymphoma. J Lipid Res 32:1237–1252

    PubMed  CAS  Google Scholar 

  27. Shachaf CM, Perez OD, Youssef S, Fan AC, Elchuri S, Goldstein MJ, Shirer AE, Sharpe O, Chen J, Mitchell DJ, Chang M, Nolan GP, Steinman L, Felsher DW (2007) Inhibition of HMGcoA reductase by atorvastatin prevents and reverses MYC-induced lymphomagenesis. Blood 110:2674–2684

    Article  PubMed  CAS  Google Scholar 

  28. Fortuny J, de Sanjose S, Becker N, Maynadie’ M, Cocco PL, Staines A, Foretova L, Vornanen M, Brennan P, Nieters A, Alvaro T, Moffetta P (2006) Statin use and risk of lymphoid neoplasms: results from the European Case–Control Study EPILYMPH. Cancer Epidemiol Biomarkers Prev 15:921–925

    Article  PubMed  CAS  Google Scholar 

  29. Li J, Herold MJ, Kimmel B, Müller I, Rincon-Orozco B, Kunzmann V, Herrmann T (2009) Reduced expression of the mevalonate pathway enzyme farnesyl pyrophosphate synthase unveils recognition of tumor cells by Vgamma9Vdelta2 T cells. J Immunol 182:8118–8124

    Article  PubMed  CAS  Google Scholar 

  30. Thompson K, Rogers MJ (2004) Statins prevent bisphosphonate-induced gd-T-cell proliferation and activation in vitro. J Bone Miner Res 19:278–288

    Article  PubMed  CAS  Google Scholar 

  31. Mönkkönen H, Auriola S, Lehenkari P, Kellinsalmi M, Hassinen IE, Vepsäläinen J, Mönkkönen J (2006) A new endogenous ATP analog (ApppI) inhibits the mitochondrial adenine nucleotide translocase (ANT) and is responsible for the apoptosis induced by nitrogen-containing bisphosphonates. Br J Pharmacol 147:437–445

    Article  PubMed  Google Scholar 

  32. Scotet E, Martinez LO, Grant E, Barbaras R, Jenö P, Guiraud M, Monsarrat B, Saulquin X, Maillet S, Estève JP, Lopez F, Perret B, Collet X, Bonneville M, Champagne E (2005) Tumor recognition following Vg9Vd2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 22:71–80

    Article  PubMed  CAS  Google Scholar 

  33. Mookerjee-Basu J, Vantourout P, Martinez LO, Perret B, Collet X, Périgaud C, Peyrottes S, Champagne E (2010) F1-adenosine triphosphatase displays properties characteristic of an antigen presentation molecule for Vgamma9Vdelta2 T cells. J Immunol 184:6920–6928

    Article  PubMed  CAS  Google Scholar 

  34. Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M (2000) Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 96:384–392

    PubMed  CAS  Google Scholar 

  35. Roelofs AJ, Jauhiainen M, Mönkkönen H, Rogers MJ, Mönkkönen J, Thompson K (2009) Peripheral blood monocytes are responsible for gammadelta T cell activation induced by zoledronic acid through accumulation of IPP/DMAPP. Br J Haematol 144:245–250

    Article  PubMed  Google Scholar 

  36. Fiore F, Castella B, Nuschak B, Bertieri R, Mariani S, Bruno B, Pantaleoni F, Foglietta M, Boccadoro M, Massaia M (2007) Enhanced ability of dendritic cells to stimulate innate and adaptive immunity on short-term incubation with zoledronic acid. Blood 110:921–927

    Article  PubMed  CAS  Google Scholar 

  37. Gomes AQ, Correia DV, Grosso AR, Lança T, Ferreira C, Lacerda JF, Barata JT, Silva MG, Silva-Santos B (2010) Identification of a panel of ten cell surface protein antigens associated with immunotargeting of leukemias and lymphomas by peripheral blood gammadelta T cells. Haematologica 95:1397–1404

    Article  PubMed  CAS  Google Scholar 

  38. Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T (1996) Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA 93:12445–12450

    Article  PubMed  CAS  Google Scholar 

  39. Stephens HA (2001) MICA and MICB genes: can the enigma of their polymorphism be resolved? Trends Immunol 22:378–385

    Article  PubMed  CAS  Google Scholar 

  40. Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T (2001) Costimulation of CD8ah T cells by NKG2D via engagement by MIC induced on virus infected cells. Nat Immunol 2:255–260

    Article  PubMed  CAS  Google Scholar 

  41. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T (1999) Broad tumor-associated expression and recognition by tumor-derived gd T cells of MICA and MICB. Proc Natl Acad Sci USA 96:6879–6884

    Article  PubMed  CAS  Google Scholar 

  42. Salih HR, Antropius H, Gieseke F (2003) Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102:1389–1396

    Article  PubMed  CAS  Google Scholar 

  43. Carbone E, Neri P, Mesuraca M (2005) HLA class I, NKG2D and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood 105:251–258

    Article  PubMed  CAS  Google Scholar 

  44. Kunzmann V, Wilhelm M (2005) Anti-lymphoma effect of gammadelta T cells. Leuk Lymphoma 46:671–680

    Article  PubMed  CAS  Google Scholar 

  45. Lança T, Correia DV, Moita CF, Raquel H, Neves-Costa A, Ferreira C, Ramalho JS, Barata JT, Moita LF, Gomes AQ, Silva-Santos B (2010) The MHC class Ib protein ULBP1 is a nonredundant determinant of leukemia/lymphoma susceptibility to gamma}{delta T-cell cytotoxicity. Blood 115:2407–2411

    Article  PubMed  Google Scholar 

  46. Uchida R, Ashihara E, Sato K, Kimura S, Kuroda J, Takeuchi M, Kawata E, Taniguchi K, Okamoto M, Shimura K, Kiyono Y, Shimazaki C, Taniwaki M, Maekawa T (2007) Gamma delta T cells kill myeloma cells by sensing mevalonate metabolites and ICAM-1 molecules on cell surface. Biochem Biophys Res Commun 354:613–618

    Article  PubMed  CAS  Google Scholar 

  47. Kunzmann V, Bauer E, Wilhelm M (1999) Gamma/delta T-cell stimulation by pamidronate. N Engl J Med 340:737–738

    Article  PubMed  CAS  Google Scholar 

  48. Saito A, Narita M, Yokoyama A, Watanabe N, Tochiki N, Satoh N, Takizawa J, Furukawa T, Toba K, Fuse I, Aizawa Y, Shinada S, Takahashi M (2007) Enhancement of anti-tumor cytotoxicity of expanded gammadelta T cells by stimulation with monocyte-derived dendritic cells. J Clin Exp Hematop 47:61–72

    Article  PubMed  Google Scholar 

  49. Saitoh A, Narita M, Watanabe N, Tochiki N, Satoh N, Takizawa J, Furukawa T, Toba K, Aizawa Y, Shinada S, Takahashi M (2008) Anti-tumor cytotoxicity of gammadelta T cells expanded from peripheral blood cells of patients with myeloma and lymphoma. Med Oncol 25:137–147

    Article  PubMed  CAS  Google Scholar 

  50. Wilhelm M, Kunzmann V, Eckstein S, Reimer P, Weissinger F, Ruediger T, Tony HP (2003) Gammadelta T cells for immune therapy of patients with lymphoid malignancies. Blood 102:200–206

    Article  PubMed  CAS  Google Scholar 

  51. Kiladjian JJ, Visentin G, Viey E, Chevret S, Eclache V, Stirnemann J, Bourhis JH, Chouaib S, Fenaux P, Caignard A (2008) Activation of cytotoxic T-cell receptor gammadelta T lymphocytes in response to specific stimulation in myelodysplastic syndromes. Haematologica 93:381–389

    Article  PubMed  CAS  Google Scholar 

  52. Bonneville M, O’Brien RL, Born WK (2010) Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 10:467–478

    Article  PubMed  CAS  Google Scholar 

  53. Coscia M, Quaglino E, Iezzi M, Curcio C, Pantaleoni F, Riganti C, Holen I, Mönkkönen H, Boccadoro M, Forni G, Musiani P, Bosia A, Cavallo F, Massaia M (2010) Zoledronic acid repolarizes tumor-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. J Cell Mol Med 14:2803–2815

    Article  PubMed  CAS  Google Scholar 

  54. Malkovska V, Cigel FK, Armstrong N, Storer BE, Hong R (1992) Antilymphoma activity of human gamma delta T-cells in mice with severe combined immune deficiency. Cancer Res 52:5610–5616

    PubMed  CAS  Google Scholar 

  55. Chen J, Niu H, He W, Ba D (2001) Antitumor activity of expanded human tumor-infiltrating gammadelta T lymphocytes. Int Arch Allergy Immunol 125:256–263

    Article  PubMed  CAS  Google Scholar 

  56. Gertner-Dardenne J, Bonnafous C, Bezombes C, Capietto AH, Scaglione V, Ingoure S, Cendron D, Gross E, Lepage JF, Quillet-Mary A, Ysebaert L, Laurent G, Sicard H, Fournié JJ (2009) Bromohydrin pyrophosphate enhances antibody-dependent cell-mediated cytotoxicity induced by therapeutic antibodies. Blood 113:4875–4884

    Article  PubMed  CAS  Google Scholar 

  57. Roelofs AJ, Thompson K, Gordon S, Rogers MJ (2006) Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res 12:6222s–6230s

    Article  PubMed  CAS  Google Scholar 

  58. Scavelli C, Di Pietro G, Cirulli T, Coluccia M, Boccarelli A, Giannini T, Mangialardi G, Bertieri R, Coluccia AM, Ribatti D, Dammacco F, Vacca A (2007) Zoledronic acid affects over-angiogenic phenotype of endothelial cells in patients with multiple myeloma. Mol Cancer Ther 6:3256–3262

    Article  PubMed  CAS  Google Scholar 

  59. Moschetta M, Di Pietro G, Ria R, Gnoni A, Mangialardi G, Guarini A, Ditonno P, Musto P, D’Auria F, Ricciardi MR, Dammacco F, Ribatti D, Vacca A (2010) Bortezomib and zoledronic acid on angiogenic and vasculogenic activities of bone marrow macrophages in patients with multiple myeloma. Eur J Cancer 46:420–429

    Article  PubMed  CAS  Google Scholar 

  60. Giraudo E, Inoue M, Hanahan D (2004) An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114:623–633

    PubMed  CAS  Google Scholar 

  61. Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP (2007) Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res 67:11438–11446

    Article  PubMed  CAS  Google Scholar 

  62. Morgan G, Davies FE, Gregory WM, Bell SE, Szubert AJ, Drayson MT, Ashcroft J, Owen RG, Cook G, Ross FM, Jackson GH, Russell NH, Child JA (2010) Optimising bone disease in myeloma; Zoledronic Acid plus Thalidomide combinations improves survival and bone endpoints: results of the MRC Myeloma IX Trial. In: ASH Annual Meeting, abstract 311

  63. Dieli F, Gebbia N, Poccia F, Caccamo N, Montesano C, Fulfaro F, Arcara C, Valerio MR, Meraviglia S, Di Sano C, Sireci G, Salerno A (2003) Induction of gammadelta T-lymphocyte effector functions by bisphosphonate zoledronic acid in cancer patients in vivo. Blood 102:2310–2311

    Article  PubMed  CAS  Google Scholar 

  64. Dieli F, Vermijlen D, Fulfaro F, Caccamo N, Meraviglia S, Cicero G, Roberts A, Buccheri S, D’Asaro M, Gebbia N, Salerno A, Eberl M, Hayday AC (2007) Targeting human gamma}delta T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res 67:7450–7457

    Article  PubMed  CAS  Google Scholar 

  65. Meraviglia S, Eberl M, Vermijlen D, Todaro M, Buccheri S, Cicero G, La Mendola C, Guggino G, D’Asaro M, Orlando V, Scarpa F, Roberts A, Caccamo N, Stassi G, Dieli F, Hayday AC (2010) In vivo manipulation of Vgamma9Vdelta2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin Exp Immunol 161:290–297

    PubMed  CAS  Google Scholar 

  66. Bennouna J, Medioni J, Rolland F, Misset JL, Campone M, Sicard H, Tiollier J, Romagne F, Douillard JY, Calvo F (2005) Phase I clinical trial of BromoHydrinPyroPhosphate, BrHPP (Phosphostim), a Vg9Vd2 T lymphocytes agonist in combination with low dose Interleukin-2 in patients with solid tumors. In: ASCO annual meeting

  67. Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T, Minato N, Toma H (2007) Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 56:469–476

    Article  PubMed  CAS  Google Scholar 

  68. Bennouna J, Bompas E, Neidhardt EM, Rolland F, Philip I, Galéa C, Salot S, Saiagh S, Audrain M, Rimbert M, Lafaye-de Micheaux S, Tiollier J, Négrier S (2008) Phase-I study of Innacell gammadelta, an autologous cell-therapy product highly enriched in gamma9delta2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 57:1599–1609

    Article  PubMed  CAS  Google Scholar 

  69. Abe Y, Muto M, Nieda M, Nakagawa Y, Nicol A, Kaneko T, Goto S, Yokokawa K, Suzuki K (2009) Clinical and immunological evaluation of zoledronate-activated Vgamma9 gammadelta T-cell-based immunotherapy for patients with multiple myeloma. Exp Hematol 37:956–968

    Article  PubMed  CAS  Google Scholar 

  70. Matsui W, Wang Q, Barber JP, Brennan S, Smith BD, Borrello I, McNiece I, Lin L, Ambinder RF, Peacock C, Watkins DN, Huff CA, Jones RJ (2008) Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 68:190–197

    Article  PubMed  CAS  Google Scholar 

  71. Gross E, L’Faqihi-Olive FE, Ysebaert L, Brassac M, Struski S, Kheirallah S, Fournié JJ, Laurent G, Quillet-Mary A (2010) B-chronic lymphocytic leukemia chemoresistance involves innate and acquired leukemic side population cells. Leukemia 24:1885–1892

    Article  PubMed  CAS  Google Scholar 

  72. Foster AE, Okur FV, Biagi E, Lu A, Dotti G, Yvon E, Savoldo B, Carrum G, Goodell MA, Heslop HE, Brenner MK (2010) Selective elimination of a chemoresistant side population of B-CLL cells by cytotoxic T lymphocytes in subjects receiving an autologous hCD40L/IL-2 tumor vaccine. Leukemia 24:563–572

    Article  PubMed  CAS  Google Scholar 

  73. Scheper RJ, Dalton WS, Grogan TM, Schlosser A, Bellamy WT, Taylor CW, Scuderi P, Spier C (1991) Altered expression of P-glycoprotein and cellular adhesion molecules on human multi-drug-resistant tumor cells does not affect their susceptibility to NK- and LAK-mediated cytotoxicity. Int J Cancer 48:562–567

    Article  PubMed  CAS  Google Scholar 

  74. Shtil AA, Turner JG, Durfee J, Dalton WS, Yu H (1999) Cytokine-based tumor cell vaccine is equally effective against parental and isogenic multidrug-resistant myeloma cells: the role of cytotoxic T lymphocytes. Blood 93:1831–1837

    PubMed  CAS  Google Scholar 

  75. Dieli F, Troye-Blomberg M, Ivanyi J, Fournié JJ, Krensky AM, Bonneville M, Peyrat MA, Caccamo N, Sireci G, Salerno A (2001) Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vgamma9/Vdelta2 T lymphocytes. J Infect Dis 184:1082–1085

    Article  PubMed  CAS  Google Scholar 

  76. Qin G, Mao H, Zheng J, Sia SF, Liu Y, Chan PL, Lam KT, Peiris JS, Lau YL, Tu W (2009) Phosphoantigen-expanded human gammadelta T cells display potent cytotoxicity against monocyte-derived macrophages infected with human and avian influenza viruses. J Infect Dis 200:858–865

    Article  PubMed  CAS  Google Scholar 

  77. Todaro M, D’Asaro M, Caccamo N, Iovino F, Francipane MG, Meraviglia S, Orlando V, La Mendola C, Gulotta G, Salerno A, Dieli F, Stassi G (2009) Efficient killing of human colon cancer stem cells by gammadelta T lymphocytes. J Immunol 182:7287–7296

    Article  PubMed  CAS  Google Scholar 

  78. Galimberti S, Benedetti E, Morabito F, Petrini I, Battolla B, Papineschi F, Fazzi R, Ciabatti E, Martino M, Cuzzola M, Console G, Iacopino P, Petrini M (2006) Different gamma/delta T clones sustain GVM and GVH effects in multiple myeloma patients after non-myeloablative transplantation. Leuk Res 30:529–535

    Article  PubMed  CAS  Google Scholar 

  79. Kunzmann V, Kimmel B, Herrmann T, Einsele H, Wilhelm M (2009) Inhibition of phosphoantigen-mediated gammadelta T-cell proliferation by CD4+ CD25+ FoxP3+ regulatory T cells. Immunology 126:256–267

    Article  PubMed  CAS  Google Scholar 

  80. Gong G, Shao L, Wang Y, Chen CY, Huang D, Yao S, Zhan X, Sicard H, Wang R, Chen ZW (2009) Phosphoantigen-activated V gamma 2V delta 2 T cells antagonize IL-2-induced CD4 +CD25+ Foxp3+ T regulatory cells in mycobacterial infection. Blood 113:837–845

    Article  PubMed  CAS  Google Scholar 

  81. Cabillic F, Toutirais O, Lavoué V, de La Pintière CT, Daniel P, Rioux-Leclerc N, Turlin B, Mönkkönen H, Mönkkönen J, Boudjema K, Catros V, Bouet-Toussaint F (2010) Aminobisphosphonate-pretreated dendritic cells trigger successful Vgamma9Vdelta2 T cell amplification for immunotherapy in advanced cancer patients. Cancer Immunol Immunother 59:1611–1619

    Article  PubMed  CAS  Google Scholar 

  82. Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Di Gialleonardo V, Cippitelli M, Fionda C, Petrucci MT, Guarini A, Foà R, Santoni A (2009) ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113:3503–3511

    Article  PubMed  CAS  Google Scholar 

  83. Wang X, Lundgren AD, Singh P, Goodlett DR, Plymate SR, Wu JD (2009) An six-amino acid motif in the alpha3 domain of MICA is the cancer therapeutic target to inhibit shedding. Biochem Biophys Res Commun 387:476–481

    Article  PubMed  CAS  Google Scholar 

  84. Benson D, Bakan CE, Zhang S, Alghothani L, Liang J, Hofmeister C, Srivastava S, Smith MK, Greenfield CN, Andre P, Squiban P, Romagne F, Caligiuri MA, Farag S (2009) IPH2101, a novel anti-inhibitory KIR monoclonal antibody, and Lenalidomide combine to enhance the natural killer (NK) cell versus multiple myeloma (MM) effect. In: ASH annual meeting, abstract 3870

  85. Gaidarova, Corral LG, Gleizer E, Young D, Brady H, Bennett B, Lopez-Girona A (2009) Lenalidomide enhances anti-tumor effect of γδ T cells against mantle cell lymphoma. In: ASH annual meeting, abstract 2616

  86. Cui Q, Abe M, Miki H, Nakamura S, Watanabe K, Ikegame A, Hiasa M, Nakano A, Harada T, Fujii S, Kagawa K, Takeuchi K, Ozaki S, Matsumoto T (2010) Lenalidomide in combination with Zoledronic Acid restores the activation and anti-myeloma effects of γδT cells attenuated by the bone marrow microenvironment. In: ASH annual meeting, abstract 3124

  87. Shi J, Tricot GJ, Garg TK, Malaviarachchi PA, Szmania SM, Kellum RE, Storrie B, Mulder A, Shaughnessy JD Jr, Barlogie B, van Rhee F (2008) Bortezomib down-regulates the cell-surface expression of HLA class I and enhances natural killer cell-mediated lysis of myeloma. Blood 111:1309–1317

    Article  PubMed  CAS  Google Scholar 

  88. Rey J, Veuillen C, Vey N, Bouabdallah R, Olive D (2009) Natural killer and gammadelta T cells in haematological malignancies: enhancing the immune effectors. Trends Mol Med 15:275–284

    Article  PubMed  CAS  Google Scholar 

  89. Tokuyama H, Hagi T, Mattarollo SR, Morley J, Wang Q, Fai-So H, Moriyasu F, Nieda M, Nicol AJ (2008) Vgamma9Vdelta 2 T cell cytotoxicity against tumor cells is enhanced by monoclonal antibody drugs–rituximab and trastuzumab. Int J Cancer 122:2526–2534

    Article  PubMed  CAS  Google Scholar 

  90. Rossi JF, Solal-Celigny P, Soubeyran P, Delvail V, Ghesquieres H, Thieblemont C, Jourdan E, Kunzmann V, Feugier P, Casasnovas RO, Le Gouill S, van den Neste E, Lafaye De Micheaux S, Marzetto M, Beautier L, Squiban P, Sicard H, Laurent G (2010) A phase I/II study of IPH1101, gamma delta T cell agonist, in combination with Rituximab re-treatment, in patients with low grade follicular lymphoma. In: EHA annual meeting, abstract 1131

  91. Bowles JA, Wang SY, Link BK, Allan B, Beuerlein G, Campbell MA, Marquis D, Ondek B, Wooldridge JE, Smith BJ, Breitmeyer JB, Weiner GJ (2006) Anti-CD20 monoclonal antibody with enhanced affinity for CD16 activates NK cells at lower concentrations and more effectively than rituximab. Blood 108:2648–2654

    Article  PubMed  CAS  Google Scholar 

  92. de Romeuf C, Dutertre CA, Le Garff-Tavernier M, Fournier N, Gaucher C, Glacet A, Jorieux S, Bihoreau N, Behrens CK, Béliard R, Vieillard V, Cazin B, Bourel D, Prost JF, Teillaud JL, Merle-Béral H (2008) Chronic lymphocytic leukaemia cells are efficiently killed by an anti-CD20 monoclonal antibody selected for improved engagement of FcgammaRIIIA/CD16. Br J Haematol 140:635–643

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Regione Piemonte (Ricerca Sanitaria, Ricerca Scientifica e Progetto Strategico ImmOnc), Fondazione Neoplasie Sangue Onlus (Torino, Italy), Associazione per lo Studio e la Cura delle Malattie del Sangue (Torino, Italy), and Novartis Farma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Massaia.

Additional information

B. Castella and C. Vitale contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castella, B., Vitale, C., Coscia, M. et al. Vγ9Vδ2 T cell-based immunotherapy in hematological malignancies: from bench to bedside. Cell. Mol. Life Sci. 68, 2419–2432 (2011). https://doi.org/10.1007/s00018-011-0704-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0704-8

Keywords

Navigation