Skip to main content
Log in

All-involution table algebras and finite projective spaces

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Table algebras all of whose nonidentity basis elements are involutions (in the sense of Zieschang), which serve as a counterpoint to the generic Hecke algebras parametrized by Coxeter groups, are classified. If two-generated, they are the family H n (for all n ≥ 3), which for suitable n arise from schemes defined by affine planes of order n − 1. Otherwise, the basis involutions correspond to the points of a finite projective space whose incidence geometry determines the algebra multiplication. This generalizes to table algebras a previous result of van Dam for association schemes. An algebraic characterization is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arad Z., Fisman E., Muzychuk M.: Generalized table algebras. Israel J. Math 114, 29–60 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blau H.I.: Table algebras. European J. Combin. 30, 1426–1455 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blau H.I., Chen G.: Table bases as unions of proper closed subsets. Algebr. Represent. Theory 17, 1527–1552 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blau H.I., Zieschang P.-H.: Sylow theory for table algebras, fusion rule algebras, and hypergroups. J. Algebra 273, 551–570 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. van Dam E.R.: A characterization of association schemes from affine spaces. Des. Codes Cryptogr. 21, 83–86 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. van Dam E.R., Muzychuk M.: Some implications on amorphic association schemes. J. Combinatorial Theory, Series A 117, 111–127 (2010)

    Article  MATH  Google Scholar 

  7. D. Gumber and H. Kalra, The conjugacy class number k(G) - a different perspective, arXiv:1404.4835v1 [math.GR] 18 Apr 2014

  8. Ja. Ju. Gol’fand, A. V. Ivanov and M. H. Klin, Amorphic cellular rings, in: I. A. Faradzev et al (Eds.), Investigations in Algebraic Theory of Combinatorial Objects, Kluwer, Dordrecht, 1994, 167–186

  9. Humphreys J.E.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  10. Kalra H., Gumber D.: A note on conjugacy classes of finite groups, Proc. Indian Acad. Sci. (Math Sci.) 124, 31–36 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Seidenberg A.: Lectures in Projective Geometry. D. Van Nostrand, Princeton (1962)

    MATH  Google Scholar 

  12. A. P. Wang, Structure and applications of Coxeter table algebras, Ph.D. Dissertation, Northern Illinois University, in preparation

  13. P.-H. Zieschang, An Algebraic Approach to Association Schemes, Springer Lecture Notes in Math. 1628, Springer-Verlag, Berlin, 1996

  14. Zieschang P.-H.: Theory of Association Schemes. Springer-Verlag, Berlin (2005)

    MATH  Google Scholar 

  15. P.-H. Zieschang, Hypergroups, Max-Planck-Institut für Mathematik Preprint Series (97), 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey I. Blau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blau, H.I., Chen, G. All-involution table algebras and finite projective spaces. Arch. Math. 105, 313–322 (2015). https://doi.org/10.1007/s00013-015-0795-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-015-0795-9

Mathematics Subject Classification

Keywords

Navigation