Skip to main content
Log in

Whittaker categories and the minimal nilpotent finite W-algebras for \(\mathfrak {sl}_{n+1}\)

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

For any \({\textbf{a}}=(a_1,\dots ,a_n)\in {\mathbb {C}}^n\), we introduce a Whittaker category \({\mathcal {H}}_{{\textbf{a}}}\) whose objects are \(\mathfrak {sl}_{n+1}\)-modules M such that \(e_{0i}-a_i\) acts locally nilpotently on M for all \(i \in \{1,\dots ,n\}\), and the subspace \(\textrm{wh}_{{\textbf{a}}}(M)=\{v\in M \mid e_{0i} v=a_iv, \ i=1,\dots ,n\}\) is finite dimensional. In this paper, we first give a tensor product decomposition \(U_S=W\otimes B\) of the localization \(U_S\) of \(U(\mathfrak {sl}_{n+1})\) with respect to the Ore subset S generated by \(e_{01},\dots , e_{0n}\). We show that the associative algebra W is isomorphic to the type \(A_n\) finite W-algebra W(e) defined by a minimal nilpotent element e in \(\mathfrak {sl}_{n+1}\). Then using W-modules as a bridge, we show that each block with a generalized central character of \({\mathcal {H}}_{{\textbf{1}}}\) is equivalent to the corresponding block of the cuspidal category \({\mathcal {C}}\), which is completely characterized by Grantcharov and Serganova. As a consequence, each regular integral block of \({\mathcal {H}}_{{\textbf{1}}}\) and the category of finite dimensional modules over W(e) can be described by a well-studied quiver with certain quadratic relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Adamović, D., Lu, R., Zhao, K.: Whittaker modules for the affine Lie algebra \(A^{(1)}_1\). Adv. Math. 289, 438–479 (2016)

    MathSciNet  Google Scholar 

  2. Backelin, E.: Representation of the category \({\cal{O} }\) in Whittaker categories. Int. Math. Res. Not. 4, 153–172 (1997)

    MathSciNet  Google Scholar 

  3. Batra, P., Mazorchuk, V.: Blocks and modules for Whittaker pairs. J. Pure Appl. Algebra 215(7), 1552–1568 (2011)

    MathSciNet  Google Scholar 

  4. Benkart, G., Ondrus, M.: Whittaker modules for generalized Weyl algebras. Represent. Theory 13, 141–164 (2009)

    MathSciNet  Google Scholar 

  5. Bernstein, J., Gelfand, S.: Tensor products of finite and infinite-dimensional representations of semisimple Lie algebras. Compos. Math. 41, 245–285 (1980)

    MathSciNet  Google Scholar 

  6. Britten, D., Khomenko, O., Lemire, F., Mazorchuk, V.: Complete reducibility of torsion free \(C_n\)-modules of finite degree. J. Algebra 276, 129–142 (2004)

    MathSciNet  Google Scholar 

  7. Brundan, J., Kleshchev, A.: Shifted Yangians and finite \(W\)-algebras. Adv. Math. 200, 136–195 (2006)

    MathSciNet  Google Scholar 

  8. Brundan, J., Stroppel, C.: Highest weight categories arising from Khovanov’s diagram algebra, category \({\cal{O} }\). Represent. Theory 15, 170–243 (2011)

    MathSciNet  Google Scholar 

  9. Cardoso, M.C., Futorny, V.: Affine Lie algebras representations induced from Whittaker modules. Proc. Am. Math. Soc. 151(3), 1041–1053 (2023)

    MathSciNet  Google Scholar 

  10. Chen, X., Jiang, C.: Whittaker modules for the twisted affine Nappi–Witten Lie algebra \(H[\tau ]\). J. Algebra 546, 37–61 (2020)

    MathSciNet  Google Scholar 

  11. Christodoupoulou, K.: Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras. J. Algebra 320, 2871–2890 (2008)

    MathSciNet  Google Scholar 

  12. Conley, C., Grantcharov, D.: Quantization and injective submodules of differential operator modules. Adv. Math. 316, 216–254 (2017)

    MathSciNet  Google Scholar 

  13. Elashvili, P., Kac, V.: Classification of good gradings of simple Lie algebras, Lie groups and invariant theory, (E. B. Vinberg ed.), Amer. Math. Soc. Transl. 213, AMS, 85-104 (2005)

  14. Erdmann, K.: Blocks of Tame Representation Type and Related Algebras. Lecture Notes in Math, vol. 1428. Springer, New York (1990)

    Google Scholar 

  15. Fernando, S.: Lie algebra modules with finite dimensional weight spaces. Trans. Am. Math. Soc. 322(2), 757–781 (1990)

    MathSciNet  Google Scholar 

  16. Ge, L., Li, Z.: Classical Whittaker modules for the classical affine Kac–Moody algebras. J. Algebra 644, 23–63 (2024)

    MathSciNet  Google Scholar 

  17. Gelfand, I.M., Kirillov, A.A.: Sur les corps liés aux algèbres enveloppantes des algèbres de Lie. Publ. Math. IHES 31, 5–19 (1966)

    Google Scholar 

  18. Gelfand, I., Ponomarev, V.: Indecomposable representations of the Lorentz group. Uspehi Mat. Nauk 28(2), 1–60 (1968)

    MathSciNet  Google Scholar 

  19. Grantcharov, D., Nguyen, K.: Exponentiation and Fourier transform of tensor modules of \({\mathfrak{sl} }(n+1)\). J. Pure Appl. Algebra 226(7), 106972 (2022)

    MathSciNet  Google Scholar 

  20. Grantcharov, D., Serganova, V.: Cuspidal representations of \({\mathfrak{sl} }(n+1)\). Adv. Math. 224, 1517–1547 (2010)

    MathSciNet  Google Scholar 

  21. Grantcharov, D., Serganova, V.: On weight modules of algebras of twisted differential operators on the projective space. Trans. Groups 21, 87–114 (2016)

    MathSciNet  Google Scholar 

  22. Guo, X., Zhao, K.: Irreducible Representations of Untwisted Affine Kac-Moody Algebras (2013). arXiv:1305.4059v2

  23. Guo, X., Lu, R., Zhao, K.: Irreducible modules over the Virasoro algebra. Doc. Math. 16, 709–721 (2011)

    MathSciNet  Google Scholar 

  24. Harish-Chandra: On some applications of the universal enveloping algebra of a semisimple Lie algebra. Trans. Am. Math. Soc. 70, 28–96 (1951)

  25. Humphreys, J.E.: Introduction to Lie Algebras and Representations Theory. Springer, Berlin, Heidelberg, New York (1972)

    Google Scholar 

  26. Kostant, B.: On Whittaker vectors and representation theory. Invent. Math. 48, 101–184 (1978)

    MathSciNet  Google Scholar 

  27. Li, Y., Zhao, J., Zhang, Y., Liu, G.: A Whittaker category for the symplectic Lie algebra and differential operators. Ark. Mat. 61, 123–140 (2023)

    MathSciNet  Google Scholar 

  28. Liu, G., Lu, R., Zhao, K.: Irreducible Witt modules from Weyl modules and \({\mathfrak{gl} }_n\)-modules. J. Algebra 511, 164–181 (2018)

    MathSciNet  Google Scholar 

  29. Liu, D., Pei, Y., Xia, L.: Whittaker modules for the super-Virasoro algebras. J. Algebra Appl. 18, 1950211 (2019)

    MathSciNet  Google Scholar 

  30. Losev, I.: Finite-dimensional representations of \(W\)-algebras. Duke Math. J. 159(1), 99–143 (2011)

    MathSciNet  Google Scholar 

  31. Losev, I., Ostrik, V.: Classification of finite-dimensional irreducible modules over \(W\)-algebras. Compos. Math. 150(6), 1024–1076 (2014)

    MathSciNet  Google Scholar 

  32. Lynch, T.: Generalized whittaker vectors and representation theory, Ph.D. thesis, Massachusetts Inst. Tech. Cambridge, MA (1979)

  33. Mathieu, O.: Classification of irreducible weight modules. Ann. Inst. Fourier. 50, 537–592 (2000)

    MathSciNet  Google Scholar 

  34. Mazorchuk, V., Stroppel, C.: Cuspidal \({\mathfrak{sl} }_n\)-modules and deformations of certain Brauer tree algebras. Adv. Math. 228, 1008–1042 (2011)

    MathSciNet  Google Scholar 

  35. McDowell, E.: On modules induced from Whittaker modules. J. Algebra 96(1), 161–177 (1985)

    MathSciNet  Google Scholar 

  36. Miličić, D., Soergel, W.: The composition series of modules induced from Whittaker modules. Comment. Math. Helv. 72(4), 503–520 (1997)

    MathSciNet  Google Scholar 

  37. Miličić, D., Soergel, W.: Twisted Harish–Chandra sheaves and whittaker modules: the nondegenerate case, developments and retrospectives in lie theory: geometric and analytic. Methods 37, 183–196 (2014)

    Google Scholar 

  38. Nilsson, J.: \(U({\mathfrak{h} })\)-free modules and coherent families. J. Pure Appl. Algebra 220(4), 1475–1488 (2016)

    MathSciNet  Google Scholar 

  39. Ondrus, M.: Whittaker modules for \(U_q(\mathfrak{sl} _2) \). J. Algebra 289(1), 192–213 (2005)

    MathSciNet  Google Scholar 

  40. Ondrus, M., Wiesner, E.: Whittaker modules for the Virasoro algebra. J. Algebra Appl. 8, 363–377 (2009)

    MathSciNet  Google Scholar 

  41. Ondrus, M., Wiesner, E.: Whittaker categories for the Virasoro algebra. Comm. Algebra 41, 3910–3930 (2013)

    MathSciNet  Google Scholar 

  42. Petukhov, A.: Finite dimensional representations of minimal nilpotent \(W\)-algebras and Zigzag algebras. Represent. Theory 22, 223–245 (2018)

    MathSciNet  Google Scholar 

  43. Premet, A.: Special transverse slices and their enveloping algebras, with an appendix by Serge Skryabin. Adv. Math. 170(1), 1–55 (2002)

    MathSciNet  Google Scholar 

  44. Premet, A.: Enveloping algebras of Slodowy slices and the Joseph ideal. J. Eur. Math. Soc. 9, 487–543 (2007)

    MathSciNet  Google Scholar 

  45. Premet, A., Topley, L.: Derived subalgebras of centralisers and finite \(W\)-algebras. Compos. Math. 150, 1485–1548 (2014)

    MathSciNet  Google Scholar 

  46. Shen, G.: Graded modules of graded Lie algebras of Cartan type, I. Mixed products of modules, Sci. Sinica Ser. A 29, no. 6, 570-581 (1986)

  47. Tan, S., Wang, Q., Xu, C.: On whittaker modules for a Lie algebra arising from the \(2\)-dimensional torus. Pacific J. Math. 273(1), 147–167 (2015)

    MathSciNet  Google Scholar 

  48. Topley, L.: One dimensional representations of finite \(W\)-algebras, Dirac reduction and the orbit method. Invent. math. 234, 1039–1107 (2023)

    MathSciNet  Google Scholar 

  49. Wang, W.: Nilpotent orbits and finite W-algebras. In: Geometric representation theory and extended affine Lie algebras, Amer. Math. Soc. Providence, 71-105 (2011)

Download references

Acknowledgements

This research is supported by NSF of China (Grants 12371026, 12271383). The authors would like to thank the referee for nice suggestions concerning the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genqiang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Li, Y. Whittaker categories and the minimal nilpotent finite W-algebras for \(\mathfrak {sl}_{n+1}\). Math. Z. 306, 65 (2024). https://doi.org/10.1007/s00209-024-03469-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-024-03469-w

Keywords

Mathematics Subject Classification

Navigation