Skip to main content
Log in

On the abelianizations of congruence subgroups of Aut(F 2)

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Let F n be the free group of rank n, and let Aut+(F n ) be its special automorphism group. For an epimorphism π : F n G of the free group F n onto a finite group G we call \({\Gamma^+(G,\pi)=\{ \varphi \in {\rm Aut}^+(F_n) \mid \pi\varphi = \pi \}}\) the standard congruence subgroup of Aut+(F n ) associated to G and π. In the case n = 2 we fully describe the abelianization of Γ+(G, π) for finite abelian groups G. Moreover, we show that if G is a finite non-perfect group, then Γ+(G, π) ≤ Aut+(F 2) has infinite abelianization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Appel, Congruence Subgroups of the Automorphism Group of a Free Group, PhD Thesis, Royal Holloway College, University of London (2010). http://www.ma.rhul.ac.uk/static/techrep/2010/RHUL-MA-2010-13.pdf

  2. Appel D., Ribnere E.: On the index of congruence subgroups of Aut(F n ). J. Alg. 321, 2875–2889 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bux K.-U., Ershov M.V., Rapinchuk A.S.: The congruence subgroup property of Aut(F 2): A group-theoretic proof of Asada’s theorem. Groups, Geometry, and Dynamics 5, 327–353 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Frasch H.: Die Erzeugenden der Hauptkongruenzuntergruppen für Primzahlstufen. Math. Ann. 108, 229–252 (1933)

    Article  MathSciNet  Google Scholar 

  5. Grunewald F., Lubotzky A.: Linear Representations of the Automorphism Group of a Free Group. Geom. Funct. Anal. 18, 1564–1608 (2009)

    Article  MathSciNet  Google Scholar 

  6. Johnson D.L.: Presentations of Groups. Cambridge University Press, Cambridge (1976)

    MATH  Google Scholar 

  7. G. Jones, Congruence and non-congruence subgroups of the modular group: a survey, Proceedings of groups—St. Andrews 1985, 223–234, London Math. Soc. Lecture Note Ser. 121, Cambridge University Press, Cambridge, 1986.

  8. W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, John Wiley & Sons, Inc., New York, 1966.

  9. I. Pak, What do we know about the product replacement algorithm? Groups and Computation III (Columbus, Ohio, 1999), Ohio State Univ. Math. Res. Inst. Publ. 8, de Gruyter, Berlin (2001), 301–347.

  10. Rademacher H.: Über die Erzeugenden von Kongruenzuntergruppe der Modulgruppe. Abhandlungen Hamburg 7, 134–148 (1929)

    Article  MATH  Google Scholar 

  11. Satoh T.: The abelianization of the congruence IA-automorphism group of a free group. Math. Proc. Camb. Phil. Soc. 142, 239–248 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Satoh T.: Corrigendum: The abelianization of the congruence IA-automorphism group of a free group. Math. Proc. Camb. Phil. Soc. 143, 255–256 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Appel.

Additional information

The author is very thankful to F. Grunewald for proposing the topic. The results presented in this paper are a part of the author’s PhD Thesis [1], which was supervised by B. Klopsch.

The author would therefore like to express his gratitude for B. Klopsch’ great support and many inspiring conversations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appel, D. On the abelianizations of congruence subgroups of Aut(F 2). Arch. Math. 99, 101–109 (2012). https://doi.org/10.1007/s00013-012-0415-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-012-0415-x

Mathematics Subject Classification (2010)

Keywords

Navigation