Skip to main content
Log in

Several Remarks on Groups of Automorphisms of Free Groups

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Let \( \mathbb{G} \) be the group of automorphisms of a free group F of infinite order. Let ℍ be the stabilizer of the first m generators of F. We show that the double cosets Γm = ℍ \ \( \mathbb{G} \)/ℍ admit a natural semigroup structure. For any compact group K, the semigroup Γm acts in the space L on the product of m copies of K. Bibliography: 20 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Goldman, “An ergodic action of the outer automorphism group of a free group,” Geom. Funct. Anal., 17, No. 3, 793–805 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Goldman and E. Z. Xia, “Action of the Johnson–Torelli group on representation varieties,” Proc. Amer. Math. Soc., 140, No. 4, 1449–1457 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  3. R. S. Ismagilov, “Elementary spherical functions on the group SL(2, P) over a field P, which is not locally compact, with respect to the subgroup of matrices with integral elements,” Math. USSR-Izvestiya, 3, No. 2, 349–380 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  4. R. S. Ismagilov, “Spherical functions over a normed field whose residue field is infinite,” Funct. Anal. Appl., 4, 37–45 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  5. R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Reprint of the 1977 edition, Springer-Verlag, Berlin (2001).

    Google Scholar 

  6. Yu. A. Neretin, Categories of Symmetries and Infinite-Dimensional Groups, Oxford Univ. Press, New York (1996).

    MATH  Google Scholar 

  7. Yu. A. Neretin, “Multi-operator colligations and multivariate spherical functions,” Anal. Math. Phys., 1, No. 2–3, 121–138 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  8. Yu. A. Neretin, “Sphericity and multiplication of double cosets for infinite-dimensional classical groups,” Funct. Anal. Appl., 45, No. 3, 225–239 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  9. Yu. A. Neretin, “Infinite tri-symmetric group, multiplication of double cosets, and checker topological field theories,” Int. Math. Res. Not. IMRN, No. 3, 501–523 (2012).

    MathSciNet  MATH  Google Scholar 

  10. Yu. A. Neretin, “Symmetries of Gaussian measures and operator colligations,” J. Funct. Anal., 263, No. 3, 782–802 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  11. Yu. A. Neretin, “Infinite-dimensional p-adic groups, semigroups of double cosets, and inner functions on Bruhat–Tits buildings,” Izv. Math., 79, No. 3, 512–553 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  12. Yu. A. Neretin, “Infinite symmetric groups and combinatorial constructions of topological field theory type,” Russian Math. Surveys, 70, No. 4, 715–773 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. I. Olshanski, “Unitary representations of the infinite symmetric group: a semigroup approach,” in: A. A. Kirillov (ed.), Representations of Lie groups and Lie algebras, Akad. Kiado, Budapest (1985), pp. 181–197.

  14. G. I. Olshanski, “On semigroups related to infinite-dimensional groups,” in: A. A. Kirillov (ed.), Topics in Representation Theory, Adv. Sov. Math., 2, Amer. Math. Soc., Providence, Rhode Island (1991), pp. 67–101.

  15. G. I. Olshanski, “Unitary representations of infinite dimensional pairs (G,K) and the formalism of R. Howe,” in: A. M. Vershik and D. P. Zhelobenko (eds.), Representation of Lie Groups and Related Topics, Gordon and Breach, Amsterdam (1990), pp. 269–463.

    Google Scholar 

  16. D. Pickrell and E. Z. Xia, “Ergodicity of mapping class group actions on representation varieties. II. Surfaces with boundary,” Transform. Groups, 8, No. 4, 397–402 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, Academic Press, New York–London (1972).

    MATH  Google Scholar 

  18. A. N. Shiryaev, Probability, 2nd edition, Springer-Verlag, New York (1996).

    Book  MATH  Google Scholar 

  19. A. M. Vershik, “Multivalued mappings with invariant measure (polymorphisms) and Markov operators,” J. Sov. Math., 23, 2243–2266 (1983).

    Article  MATH  Google Scholar 

  20. K. Vogtmann, “Automorphisms of free groups and outer space,” Geom. Dedicata, 94, 1–31 (2002).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Neretin.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 436, 2015, pp. 189–198.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neretin, Y.A. Several Remarks on Groups of Automorphisms of Free Groups. J Math Sci 215, 748–754 (2016). https://doi.org/10.1007/s10958-016-2880-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-2880-4

Keywords

Navigation