Algebra universalis

, 79:22 | Cite as

Keimel’s problem on the algebraic axiomatization of convexity

  • A. Komorowski
  • A. B. Romanowska
  • J. D. H. Smith
Open Access
Article

Abstract

Convex sets may be viewed as algebras equipped with a set of binary convex combinations that is indexed by the open unit interval of real numbers. Convex sets generate the variety of barycentric algebras, which also includes semilattices where the semilattice multiplication is repeated uncountably many times. Barycentric algebras are defined by three axioms: idempotence, skew-commutativity, and skew-associativity. Since the skew-associativity axiom is rather complicated, Klaus Keimel has asked whether it can simply be replaced by the entropic law. It turns out that the answer is negative. The counterexamples presented and studied in this paper are known as threshold barycentric algebras, depending on a threshold taken from the left-hand side of the closed unit interval. They offer an entire spectrum of algebras, ranging from barycentric algebras for threshold 0 to commutative idempotent entropic groupoids for threshold 1/2.

Keywords

Entropic algebra Barycentric algebra Convex set Semilattice Self-distributive Convexity 

Mathematics Subject Classification

08A99 52A01 

References

  1. 1.
    Davey, B.A., Davis, G.: Tensor products and entropic varieties. Algebra Universalis 21, 68–88 (1985)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Frink, O.: Symmetric and self-distributive systems. Am. Math. Monthly 62, 697–707 (1955)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Gudder, S.: Convex structures and operational quantum mechanics. Comm. Math. Phys. 29, 249–264 (1973)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ignatov, V.V.: Quasivarieties of convexors, (in Russian). Izv. Vyssh. Uchebn. Zaved. Mat. 29, 12–14 (1985)MathSciNetMATHGoogle Scholar
  5. 5.
    Ježek, J., Kepka, T.: Medial Groupoids. Academia, Praha (1983)MATHGoogle Scholar
  6. 6.
    Ježek, J., Kepka, T.: The lattice of varieties of commutative abelian distributive groupoids. Algebra Universalis 5, 225–237 (1975)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Loday, J.-L.: Dialgebras. In: Loday, J.L., Frabetti, A., Chapoton, F., Goichot, F. (eds.) Dialgebras and related operads, pp. 7–66. Springer Lecture Notes in Mathematics, Berlin (2001)CrossRefGoogle Scholar
  8. 8.
    Keimel, K.: private communication (2015)Google Scholar
  9. 9.
    Matczak, K., Romanowska, A.: Quasivarieties of commutative binary modes. Studia Logica 78, 321–335 (2004)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Matczak, K., Smith, J.D.H.: Undirected replicas of directional binary algebras. J. Algebra Appl. 13, 1450051 (2014). (19 pp)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Neumann, W.D.: On the quasivariety of convex subsets of affine spaces. Arch. Math. (Basel) 21, 11–16 (1970)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Orłowska, E., Romanowska, A.B., Smith, J.D.H.: Abstract barycentric algebras. Fund. Inform. 81, 257–273 (2007)MathSciNetMATHGoogle Scholar
  13. 13.
    Ostermann, F., Schmidt, J.: Der baryzentrische Kalkül als axiomatische Grundlage der affinen Geometrie. J. Reine Angew. Math. 224, 44–57 (1966)MathSciNetMATHGoogle Scholar
  14. 14.
    Romanowska, A.B., Smith, J.D.H.: Modal Theory. Heldermann, Berlin (1985)MATHGoogle Scholar
  15. 15.
    Romanowska, A.B., Smith, J.D.H.: On the structure of barycentric algebras. Houston J. Math. 16, 431–448 (1990)MathSciNetMATHGoogle Scholar
  16. 16.
    Romanowska, A.B., Smith, J.D.H.: Modes. World Scientific, Singapore (2002)CrossRefMATHGoogle Scholar
  17. 17.
    Romanowska, A.B., Smith, J.D.H.: Barycentric algebras and gene expression. In: di Gesù, V., Pal, S.K., Petrosino, A. (eds.) WILF 2009, pp. 20–27. Springer Lecture Notes in Artificial Intelligence, Berlin (2009)Google Scholar
  18. 18.
    Skornyakov, L.A.: Stochastic algebras. Izv. Vyssh. Uchebn. Zaved. Mat. 29, 3–11 (1985)MathSciNetMATHGoogle Scholar
  19. 19.
    Smith, J.D.H.: Modes, modals, and barycentric algebras: a brief survey and an additivity theorem. Demonstr. Math. 44, 571–587 (2011)MathSciNetMATHGoogle Scholar
  20. 20.
    Smith, J.D.H.: Directional algebras. Houston J. Math. 42, 1–22 (2016)MathSciNetMATHGoogle Scholar
  21. 21.
    Smith, J.D.H., Romanowska, A.B.: Post-Modern Algebra. Wiley, New York (1999)CrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. Komorowski
    • 1
  • A. B. Romanowska
    • 1
  • J. D. H. Smith
    • 2
  1. 1.Faculty of Mathematics and Information SciencesWarsaw University of TechnologyWarsawPoland
  2. 2.Department of MathematicsIowa State UniversityAmesUSA

Personalised recommendations