Skip to main content

Formal Adventures in Convex and Conical Spaces

  • Conference paper
  • First Online:
Intelligent Computer Mathematics (CICM 2020)

Abstract

Convex sets appear in various mathematical theories, and are used to define notions such as convex functions and hulls. As an abstraction from the usual definition of convex sets in vector spaces, we formalize in Coq an intrinsic axiomatization of convex sets, namely convex spaces, based on an operation taking barycenters of points. A convex space corresponds to a specific type that does not refer to a surrounding vector space. This simplifies the definitions of functions on it. We show applications including the convexity of information-theoretic functions defined over types of distributions. We also show how convex spaces are embedded in conical spaces, which are abstract real cones, and use the embedding as an effective device to ease calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The support of a probability distribution d is the set \(\{i \mid d_i > 0\}\).

  2. 2.

    This way of restricting the domain of functions in their properties rather than in the definitions is a design choice often found in Coq. It makes it possible for functions such as the logarithm to be composable without being careful about their domains and ranges, and leads to a clean separation between definitions and properties of functions in the formalization.

References

  1. Affeldt, R., Cohen, C., Rouhling, D.: Formalization techniques for asymptotic reasoning in classical analysis. J. Formaliz. Reason. 11(1), 43–76 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Affeldt, R., Garrigue, J., Nowak, D., Saikawa, T.: A trustful monad for axiomatic reasoning with probability and nondeterminism, March 2020, https://arxiv.org/abs/2003.09993

  3. Affeldt, R., et al.: Monadic equational reasoning in Coq (2019). https://github.com/affeldt-aist/monae/, Coq scripts

  4. Affeldt, R., Garrigue, J., Saikawa, T.: Examples of formal proofs about data compression. In: International Symposium on Information Theory and Its Applications (ISITA 2018), Singapore, 28–31 October 2018, pp. 665–669. IEICE, IEEE Xplore, October 2018

    Google Scholar 

  5. Affeldt, R., Garrigue, J., Saikawa, T.: Reasoning with conditional probabilities and joint distributions in Coq. Computer Software (2020, to appear). Japan Society for Software Science and Technology. https://staff.aist.go.jp/reynald.affeldt/documents/cproba_preprint.pdf

  6. Affeldt, R., Hagiwara, M., Sénizergues, J.: Formalization of Shannon’s theorems. J. Autom. Reason. 53(1), 63–103 (2014)

    Article  MathSciNet  Google Scholar 

  7. Affeldt, R., Nowak, D., Saikawa, T.: A hierarchy of monadic effects for program verification using equational reasoning. In: Hutton, G. (ed.) MPC 2019. LNCS, vol. 11825, pp. 226–254. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33636-3_9

    Chapter  MATH  Google Scholar 

  8. Beaulieu, G.: Probabilistic completion of nondeterministic models. Ph.D. thesis, University of Ottawa (2008)

    Google Scholar 

  9. Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I.: Canonical big operators. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 86–101. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7_11

    Chapter  Google Scholar 

  10. Bonchi, F., Silva, A., Sokolova, A.: The power of convex algebras. In: Meyer, R., Nestmann, U. (eds.) 28th International Conference on Concurrency Theory (CONCUR 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 85, pp. 23:1–23:18. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.CONCUR.2017.23

  11. Cheung, K.H.: Distributive interaction of algebraic effects. Ph.D. thesis, University of Oxford (2017)

    Google Scholar 

  12. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  13. Flood, J.: Semiconvex geometry. J. Aust. Math. Soc. 30(4), 496–510 (1981). https://doi.org/10.1017/S1446788700017973

    Article  MathSciNet  MATH  Google Scholar 

  14. Fritz, T.: Convex spaces I: Definition and examples (2015). https://arxiv.org/abs/0903.5522, First version: 2009

  15. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_23

    Chapter  Google Scholar 

  16. van Heerdt, G., Hsu, J., Ouaknine, J., Silva, A.: Convex language semantics for nondeterministic probabilistic automata. In: Fischer, B., Uustalu, T. (eds.) ICTAC 2018. LNCS, vol. 11187, pp. 472–492. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02508-3_25

    Chapter  Google Scholar 

  17. Infotheo: A Coq formalization of information theory and linear error-correcting codes (2020). https://github.com/affeldt-aist/infotheo/, Coq scripts

  18. Infotheo: probability/convex_choice.v. In: [17] (2020), Coq scripts

    Google Scholar 

  19. Jacobs, B.: Convexity, duality and effects. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IAICT, vol. 323, pp. 1–19. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15240-5_1

    Chapter  Google Scholar 

  20. Jones, C., Plotkin, G.D.: A probabilistic powerdomain of evaluations. In: [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science, pp. 186–195, June 1989. https://doi.org/10.1109/LICS.1989.39173

  21. Keimel, K., Plotkin, G.: Mixed powerdomains for probability and nondeterminism. Log. Meth. Comput. Sci. 13, December 2016. https://doi.org/10.23638/LMCS-13(1:2)2017

  22. Keimel, K., Plotkin, G.D.: Predicate transformers for extended probability and non-determinism. Math. Struct. Comput. Sci. 19(3), 501–539 (2009). https://doi.org/10.1017/S0960129509007555

    Article  MathSciNet  MATH  Google Scholar 

  23. Kirch, O.: Bereiche und Bewertungen. Master’s thesis, Technischen Hochschule Darmstadt (1993)

    Google Scholar 

  24. Mahboubi, A., Tassi, E.: Canonical structures for the working coq user. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 19–34. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2_5

    Chapter  Google Scholar 

  25. Neumann, W.D.: On the quasivariety of convex subsets of affine spaces. Archiv der Mathematik 21, 11–16 (1970)

    Article  MathSciNet  Google Scholar 

  26. Semadini, Z.: Banach Spaces of Continuous Functions. PWN (1971)

    Google Scholar 

  27. Stone, M.H.: Postulates for the barycentric calculus. Ann. Mat. Pura Appl. 29(1), 25–30 (1949)

    Article  MathSciNet  Google Scholar 

  28. Świrszcz, T.: Monadic functors and convexity. Bulletin de l’Académie polonaise des sciences. Série des sciences mathématiques, astronomiques et physiques 22(1) (1974)

    Google Scholar 

  29. The Coq Development Team: The Coq Proof Assistant Reference Manual. Inria (2019). https://coq.inria.fr. Version 8.11.0

  30. Tix, R., Keimel, K., Plotkin, G.: Semantic domains for combining probability and non-determinism. Electron. Notes Theor. Comput. Sci. 222, 3–99 (2009). https://doi.org/10.1016/j.entcs.2009.01.002

    Article  MATH  Google Scholar 

  31. Varacca, D., Winskel, G.: Distributing probability over non-determinism. Math. Struct. Comput. Sci. 16(1), 87–113 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the JSPS KAKENHI Grant Number 18H03204. We also thank Shinya Katsumata for his comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Garrigue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Affeldt, R., Garrigue, J., Saikawa, T. (2020). Formal Adventures in Convex and Conical Spaces. In: Benzmüller, C., Miller, B. (eds) Intelligent Computer Mathematics. CICM 2020. Lecture Notes in Computer Science(), vol 12236. Springer, Cham. https://doi.org/10.1007/978-3-030-53518-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53518-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53517-9

  • Online ISBN: 978-3-030-53518-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics