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Keimel’s problem on the algebraic
axiomatization of convexity

A. Komorowski, A. B. Romanowska and J. D. H. Smith

Abstract. Convex sets may be viewed as algebras equipped with a set of
binary convex combinations that is indexed by the open unit interval of
real numbers. Convex sets generate the variety of barycentric algebras,
which also includes semilattices where the semilattice multiplication is
repeated uncountably many times. Barycentric algebras are defined by
three axioms: idempotence, skew-commutativity, and skew-associativity.
Since the skew-associativity axiom is rather complicated, Klaus Keimel
has asked whether it can simply be replaced by the entropic law. It turns
out that the answer is negative. The counterexamples presented and stud-
ied in this paper are known as threshold barycentric algebras, depending
on a threshold taken from the left-hand side of the closed unit interval.
They offer an entire spectrum of algebras, ranging from barycentric al-
gebras for threshold 0 to commutative idempotent entropic groupoids for
threshold 1/2.
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1. Introduction

Real convex sets may be presented algebraically as sets with binary operations
given by weighted means, the weights being taken from the open unit interval
I° =]0, 1] in the set of reals. The class of convex sets is a quasivariety (defined
by certain implications), and generates the variety (defined by identities) of so-
called barycentric algebras (Section 2). Both these classes have a well-developed
theory, a special case of the general theory of modes (idempotent and entropic
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algebras, Section 3) [3,4,11,12,13,14,15,16,18]. In particular, like all modes,
barycentric algebras implement self-distributivity in the sense of [2].

The variety of barycentric algebras contains convex sets, semilattices
(where all the barycentric operations coincide), and certain semilattice sums
of convex sets. It is defined by three types of axioms: idempotence, skew-
commutativity, and skew-associativity, the latter two implying the entropic
property that each operation is a homomorphism. Since the skew-associativity
axiom is rather complicated, Klaus Keimel asked whether it may simply be
replaced by entropicity alone [8]. In this paper, we show that the answer is neg-
ative. We construct an entropic algebra, of the same type as barycentric alge-
bras, which is idempotent and skew-commutative, but is not skew-associative
(Theorem 5.1).

Together with barycentric algebras, the counterexample belongs to a
much larger family of algebras described as threshold barycentric algebras,
which model the concept of threshold convexity introduced in Section 4. Take
a fixed element ¢ of [0,1/2] known as the threshold. Then the full open real
interval I° of binary barycentric operations is replaced by the barycentric op-
erations indexed by the subinterval [t, 1 —¢] N I° of I°, together with so-called
extreme operations: left-zero operations (left projections) indexed by elements
of the interval ]0, t[, and right-zero operations (right projections) indexed by el-
ements of the interval |1 —t, 1[. These extreme operations implement projection
dimonoids in the sense of [7, Ex. 1.3(b)], [10, Ex. 3.2], [20, Ex. 2.2].

Varieties of threshold barycentric algebras fall into three classes:

o The variety B° of threshold-0 barycentric algebras coincides with the
variety B of usual (skew-associative) barycentric algebras.

e For 0 < t < 1/2, threshold-t barycentric algebras are not skew-associa-
tive (Theorem 6.4). But the variety B* of threshold-t barycentric algebras
is equivalent to the variety B of estended barycentric algebras (Theo-
rem 9.4). Extended barycentric algebras are defined like usual barycen-
tric algebras, but with the closed unit interval I of barycentric operations
replacing the open interval I°, and thus including projection dimonoid
structure.

e The variety B'/? of threshold-(1/2) barycentric algebras is equivalent to
the variety CBM of extended commutative binary modes (Theorem 7.2).
These algebras have one binary commutative mode operation that is given
by t = 1/2, together with projection dimonoid structures.

Thus threshold barycentric algebras offer an entire spectrum of algebras, rang-
ing from the usual barycentric algebras at one end to the commutative binary
modes at the other. In [17], it was shown that barycentric algebras may be used
to replace Boolean networks in systems biology with models offering a more re-
alistic tracking of the biochemistry. Because the Boolean networks correspond
to the use of threshold-(1/2) convexity in that application, the threshold ¢
may be viewed as a parameter providing a smooth transition between the two
classes of models.
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Theorem 8.5 shows that for a threshold 0 < ¢ < 1/2, finite-dimensional
simplices (free barycentric algebras) are also generated by their vertices un-
der the basic threshold-¢ barycentric operations. The golden section makes an
appearance in the analysis underlying the proof of the theorem (Remark 8.3).

Section 10 discusses the varieties S* of threshold-¢ semilattices (Proposi-
tion 10.3). Extended semilattices are defined by adding projection operations
to semilattices, in similar fashion to extended barycentric algebras and ex-
tended commutative binary modes. Then for each positive threshold ¢, the
variety St of threshold-¢ semilattices is equivalent to the variety of extended
semilattices (Proposition 10.6).

Sections 11 and 12 investigate the behavior of threshold-¢ barycentric
varieties within the full variety SC of skew-commutative modes of barycentric
algebra type I° x {2}. Theorem 12.3 identifies the meet B* A B! for distinct
thresholds s and ¢, while Theorem 12.6 identifies the join B v Bt.

Background facts concerning barycentric algebras and commutative bi-
nary modes are summarized in Sections 2 and 3. For more information on such
algebras, and modes in general, we refer the reader to the monographs [14,16].
We use notation and conventions similar to those of the cited monographs and
[21].

2. Barycentric algebras
Let F be a field. A unary operation of complementation is defined by
p=1-p
for p € F. A binary dual multiplication is defined by
pog=(p'q)

for p,q € F. A binary operation of implication is defined by

1 if p=20;

p—q= . (2.1)
q/p otherwise

for p,q € F'. Note that for F' = GF(2), the definition (2.1) recovers the usual
Boolean implication.
Let I° denote the open unit interval

10,1[={peR|0<p<1}.

Then an algebra (A, I°), with a binary operation p for each operator p € I°,
is said to be a barycentric algebra if it satisfies the identities

TTp =1
of idempotence,
of skew-commutativity, and

[wyplzq = z[yz(pog — q)]pog (2.3)




22 Page 4 of 20 A. Komorowski, A. B. Romanowska and J. D. H. Smith Algebra Univers.

of skew-associativity for all p,q € I°. The class B of barycentric algebras forms
a variety [3,4,11,12,13,14,15,16,18].
Convex subsets of real affine spaces are barycentric algebras (C, I°) under
the operations
zyp = xp’ +yp=z(1 —p) +yp (24)
for each p € I°. They form the subquasivariety C of the variety B defined by
the cancellation laws
(zyp = x2p) — (y = 2) (2.5)
for all operations p of I°. In particular, cancellative members of B are precisely
convex sets (see [16, Th. 5.8.6]), and the class C generates the variety B. Other
examples are provided by semilattices, idempotent, commutative semigroups
(S,-), considered as barycentric algebras with the “stammered” operation x -
y = zyp for all p € I°. Note that semilattice barycentric algebras (S,I°)
satisfy the identities zyp = zyr for all p,r € I°. They are also interpreted as
ordered sets, meet semilattices with the ordering relation defined by z < y if
and only if z - y = 2. The variety S of semilattice barycentric algebras is the
only non-trivial proper subvariety of the variety B.
The structure of general barycentric algebras (A, I°) is described by the
following theorem.

Theorem 2.1 ([16, §7.5]).

(a)  FEach barycentric algebra (A, I°) has a homomorphism onto its semilattice
replica, with open convez sets as the corresponding fibres.

(b)  Fach barycentric algebra (A, I°) is a subalgebra of a Ptonka sum of convex
sets over its semilattice replica.

Barycentric algebras may also be defined as algebras (A, I), where I =
[0,1] is the closed unit interval of R, with the operations 0 and 1 defined by

zy0 =z and zyl =y (2.6)

[3,4,12,13,18]. The class B of barycentric algebras defined in this way is also a
variety. It is specified by the identities defining B together with the additional
identities (2.6). Examples are provided by convex sets and semilattices con-
sidered as usual barycentric algebras, with two additional operations 0 and 1.
We will refer to members of B as extended barycentric algebras.

3. Entropic algebras and modes

For an algebra (A, Q) equipped with a set  of binary operations, and w, ¢ € Q,
consider the entropic identity

(zyw)(2tw)p = (z2¢) (ytp)w. (3.1)
Algebras satisfying the identities (3.1) for all pairs of (equal or unequal) op-
erations from (2 are called entropic algebras. Idempotent entropic algebras are
called modes. Left-zero bands (defined by the left projection x <y = x) and
right-zero bands (defined by the right projection x >y = y), as well as semi-
lattices and more general semigroup modes (namely normal bands), all form
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modes. Note that the operations 0 and 1, as defined in (2.6), are respectively
left-zero and right-zero operations.

Further examples of modes are provided by barycentric and extended
barycentric algebras, and by affine spaces and their reducts. (Here, affine spaces
over a field F' of odd characteristic are defined as algebras (A, F') with binary
operations p given by (2.4) for each p € F. In a similar way, one may de-
fine affine spaces over commutative rings of odd characteristic [16]). Among
groupoids (or magmas), algebras with one binary operation, we will be es-
pecially interested in commutative binary modes, groupoid modes (A, ) with
a commutative multiplication %, and in extended commutative binary modes
(A, *,<,>), equipped with additional left and right projections.

Commutative binary modes form a variety, written as CBM [16, Ch. 5].
The cancellative members of this variety are known to be subreducts of quasi-
group modes, or equivalently 1/2-subreducts of affine spaces over the ring of
rational dyadic numbers, D = {2"m | m,n € Z} [5, Th. 5.3.1], [16, Chs. 6,
7]. The unit interval D; = D N[0, 1] of D, considered as a groupoid under the
operation = of arithmetical mean, generates the variety CBM. The algebra
(Dq,*) is the free commutative binary mode on two free generators 0 and 1
[16, Ch. 5]. Now (Dy,) and (ID;,D]), where D7 is the set of operations d for
d € D} = Dy \ {0,1}, are (clonally or term) equivalent [16, §1.4]. More gen-
erally, subalgebras of convex sets considered as algebras with x as the basic
operation, or with the operations of D] as the basic operations, are equivalent.

The structure of commutative binary modes is generally similar to the
structure of barycentric algebras as summarized in Theorem 2.1.

Theorem 3.1 ([16, §7.5]).

(a)  Each commutative binary mode (A,x) has a homomorphism onto its
semilattice replica, with cancellative subgroupoids as the corresponding
fibres.

(b)  Fach commutative binary mode (A, *) is a subalgebra of a Ptonka sum of
cancellative commutative binary modes over its semilattice replica.

4. Threshold convexity

Convexity is described algebraically using the binary operations (2.4) of weighted
means, for complementary weights p’, p taken from the open unit interval. The
new concept of threshold convexity replaces weighted means whose weights
differ widely by projections to the most heavily weighted argument.

Definition 4.1. Consider a real number 0 < ¢ < 1/2, known as the threshold.
(a) For elements z,y of a convex set C, define
T if r<t
ryr=qayr=xz(1—r)+yr if t<r<1-1 (4.1)
Y if r>1-t
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for 0 < r < 1. Then the binary operations r are described as threshold-
convex combinations. B

(b) A threshold-convex combination r is respectively known as small, moder-
ate, or large when r lies in the respective members |0, ¢[, [t, 1 —¢],]1 —¢,1]
of the partition {]0,¢[,[t,1 —¢],]1 — ¢, 1[} of the open unit interval |0, 1[.
Together, small and large threshold-convex combinations are described
as extreme.

Remark 4.2. The threshold-convex combinations specialize to the standard
convex combinations when the threshold is set to zero, so that there are no
extreme convex combinations in that case.

Lemma 4.3. Set a threshold 0 < t < 1/2. Let C be a convex set. Then under
the threshold-convex combinations r for 0 < r < 1, the algebra (C,1°) forms
an idempotent algebra, satisfying the skew-commutativity identity (2.2) written
as:

zyr=yxr . (4.2)

Proposition 4.4. Set a threshold 0 < t < 1/2. Let C be a convexr set. Then
under the threshold-convex combinations r for 0 < r < 1, the algebra (C,I°)
forms an entropic algebra.

Proof. For elements u,v,w,x of C' and 0 < r,s < 1, the entropic identity

(wvr) (wzr)s = (uws) (vrs)r (4.3)

must be verified. Note that the identity is symmetrical in the operations r and
S.

"~ There are various cases for the evaluation of the two sides of (4.3), accord-
ing to whether the threshold-convex combinations r and s are small, moderate,
or large. If both are small, the algebra (C,r, s) is a left zero semigroup (taken
with repeated operations). As such, it is entropic. Dually, (C,r,s) is entropic
as a right zero semigroup if both r and s are large. Again, (C,r, s) is entropic
as a reduct of a barycentric algebra if both r and s are moderate.

If one combination (say r) is small, and the other is moderate, then
both sides of (4.3) reduce to uw s. The case where one is large, and the other
moderate, is dual. Finally, suppose r is small and s is large. Then the left-
hand side of (4.3) evaluates to uw s = w, while the right-hand side evaluates
to wrr =w. B U

Corollary 4.5. Threshold-convex sets (C,1°) are modes.

5. Keimel’s problem

Theorem 5.1. In the specification of barycentric algebras, the axiom of skew-
associativity cannot be replaced by the axiom of entropicity.

Proof. Consider the closed unit interval I = [0, 1] as a convex set. Set a thresh-
old of t = 1/2, and take I as an algebra under all the threshold-convex com-
binations, as outlined in Section 4. According to Lemma 4.3, I is idempotent
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and skew-commutative. By Proposition 4.4, I is entropic. But it will now be
shown that I is not skew-associative: the identity (2.3) written as

[wyp]zq = 2[yz(pog—a)]pog (5.1)

is violated.

In the identity (5.1), take p = ¢ = 1/2. Thus poq = (p'¢’) = (1/4)" = 3/4,
and pog — ¢ =3/4 — 1/2 =(1/2)/(3/4) = 2/3. Now take x = y = 0 and
z = 1. Then the left-hand side of (5.1) evaluates to (zy1/2)z1/2 = 1/2, while
the right-hand side evaluates to S

z(yz(pog)Hq)poq:z(yzﬁ)?)/:élzl. O

6. Threshold barycentric algebras

Definition 6.1. Set a threshold 0 < ¢ < 1/2. Then the class B! of threshold-t
(barycentric) algebras is the variety generated by the class of convex sets under
the threshold-convex combinations of Definition 4.1.

Following Definition 4.1, the operations r of threshold-¢ barycentric alge-
bras will be called extreme (small if 0 < r < ¢, and large if ¢/ < r < 1), and
moderate if t <r <t

Remark 6.2. Following Remark 4.2, the class B° is just the usual variety B of
barycentric algebras.

If ¢ > 0, then a threshold-t barycentric algebra C* = (C,I°) defined on
a convex set C' may be considered as an algebra (C, [t, '], {r | 7 <t} {r|[r >

t'}), where [t,#'] is the set of operations r = r for ¢ < < #'. In particular, if
t =1/2, then C'/2 = (€, 1/2=1/2{r|r<1/2}{r|r>1/2}).

Remark 6.3. Threshold-(1/2) convex sets are commutative binary modes under
the operation * = 1/2. As such, they generate the variety CBM [16, Ch 5].
Note that the elements 0 and 1 of the algebra (R, x) generate the unit dyadic
interval D;.

In view of Remarks 6.2 and 6.3, it emerges that threshold barycentric
algebras offer a spectrum reaching across from barycentric algebras at one end
through to commutative binary modes at the other.

The proof of Theorem 5.1 involved an algebra in the class B'/2 which
is not skew-associative. The following result uses a slightly more refined and
general adaptation of that construction.

Theorem 6.4. For a threshold 0 < t < 1/2, each member of the class Bt of
threshold-t barycentric algebras is skew-associative if and only if t = 0.

Proof. As noted in Remark 6.2, algebras in the class B® are barycentric alge-
bras. As such, they are certainly skew-associative.
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Now suppose that the threshold t is positive. Consider the closed unit
interval I = [0, 1] as a convex set. In the skew-associativity identity (5.1), set
p=tand ¢g=1—1t¢. Then

poq=@q) =(p) =1-t+t*>1-t. (6.1)

Take x = 1 and y = z = 0. Using the inequality (6.1) and the definition
(4.1), along with the idempotence of the threshold-convex combinations, the
right-hand side of (5.1) evaluates to

1(00(pog) = q)peg=00(pogq) - q=0.

However, the left-hand side evaluates to (10£)01 —¢ = (1 —¢)t > 0. O

As we have already seen, cancellativity plays an important role in the
theory of barycentric algebras and commutative binary modes. The concept is
extended to threshold barycentric algebras as follows.

Definition 6.5. Consider a threshold 0 < ¢ < 1/2, and a threshold-¢ barycentric
algebra (C, I°). The algebra is cancellative if it satisfies the quasi-identity

(zyr = wzr) — (y = 2) (6.2)
for all t <r < 1—t. (Compare with (2.5).

Remark 6.6. If a threshold-¢ barycentric algebra were to satisfy the cancella-
tion quasi-identity (6.2) for any extreme combination r, then it would neces-
sarily be trivial.

The final result of this follows directly by the known properties of barycen-
tric algebras and commutative binary modes (compare Sections 2 and 3.)

Proposition 6.7. Let (C,1°) be a threshold-t barycentric algebra.

(a) Ift=0, then C is cancellative if and only if it is a convex set.

(b)  Ift=1/2, then C is cancellative if and only if (C,1/2) is a multiplicative
subreduct of a quasigroup, or equivalently a 17/2-red7uct of an affine space
over the ring D.

7. The variety B'/?

In this section, we show that the varieties B'/2 of threshold-(1/2) algebras and
CBM of extended commutative binary modes are (clonally or term) equiva-
lent. Thus, equivalence is understood in the sense explained in [16, §2.2]. We

conclude the section with some remarks concerning the lattice of subvarieties
of the variety CBM.

Lemma 7.1. Let C' be a convex set. Then the threshold-(1/2) barycentric alge-
bra (C,1°) and the extended commutative binary mode (C,x = 1/2,<,1>) are
equivalent.
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Proof. Consider the threshold-(1/2) barycentric algebra C'/? as an algebra
(C,I°) = (C,1/2,{r | » < 1/2},{r | r > 1/2}). Then define the left-zero
operation < byix <Qy = ayr for r < 1/2 and the right-zero operation > by
x>y = xyr for r > 1/2. Thus (C,, <, >) is an extended commutative binary
mode. On the other hand, by defining 1/2 = %, r = < for each 7 < 1/2, and
r = for each r > 1/2 in an extended commutative binary mode, one obtains
the threshold-(1/2) barycentric algebra (C, I°). O

Lemma 7.1 extends to an equivalence between the corresponding vari-
eties.

Theorem 7.2. The variety §1/2 of all threshold-(1/2) barycentric algebras and
the variety CBM of extended commutative binary modes are equivalent.

Proof. First recall that the variety CBM of commutative binary modes is
generated by the 1/2-subreducts of dyadic affine spaces, and hence also by
1/2-reducts of real convex sets.

~ Lemma 7.1 shows that the *-reducts of convex sets, considered as ex-
tended commutative binary modes, are equivalent to threshold-(1/2) barycen-
tric algebras. Thus each member of CBM becomes a threshold-(1/2) barycen-
tric algebra. On the other hand, each threshold-(1/2) barycentric algebra has
the structure of an extended commutative binary mode under the operation
* = 1/2, with < equal to any small extreme operation and > equal to any

large extreme operation. O

The lattice of varieties of commutative binary modes was first described
in [6]. (See also [14, §4.5] and [16, §10.4].) The lattice of proper subvarieties of
CBM is isomorphic to the product of the two-element lattice and the lattice
of odd natural numbers under the divisibility relation. Each proper subvariety
of CBM is defined by one binary identity. The addition of extreme operations
r for r €]0,1/2[U]1/2,1] to CBM-algebras has no influence on the lattice
of subvarieties of these algebras. Thus the lattice of subvarieties of B'/? is
isomorphic to the lattice of subvarieties of CBM. Each proper subvariety of
B'/2 is defined by one binary identity defining the corresponding subvariety of
CBM.

8. Simplices

Recall that, under the operations of I°, the real k-dimensional simplex is the
free algebra in B over the finite set X = {xo, ...,z } of its vertices. It may be
characterized as the I°-subreduct

k
T GI,ZWI}

=0

{azorg + -+ TR

of the free real affine space R* over the same set X. In particular, the closed
unit interval (I, I°) is the free barycentric algebra on two free generators 0 and
1.
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The aim of this section is to present Theorem 8.5, showing that for a
threshold 0 < ¢t < %, each real simplex is generated by threshold-convex com-
binations of its extreme points.

First recall a fact we will use in the following proofs. For each p € I°, and
subalgebras A, B of a convex set (C, I°), the set ABp := {abp|a € A, b€ B}
is a subalgebra of (C,I°). See [16, §5.1], for example.

Lemma 8.1. Let0 <t < 3 L be a threshold. Consider the closed real unit interval
I under the threshold- convez combinations of Definition 4.1. Define

[T, s

logt — logt’
Then the interval [0, (t')%] is contained in the subalgebra A of I generated by
{0,1}.
Proof. For a positive integer h, one has
thtt < < ()t < (¢)"+?
since t < t/. Thus
L () = [ () U [ ()]
= (0", 0(¢")"t] U [0e"t', 0(")"t']
= 0[t", ()M uo[t”, ()"t .

Induction on h then shows that each interval [t", (¢/)"] lies in A.
For a positive integer k, one has

L N[t ) A2 & )T >t o (k4 1)logt’ > klogt

_ / ’
o 1+1_ logt ES logt —logt > logt .
k — logt’ k logt’ logt — logt’
Thus with K as in (8.1), the union
oo
U %, ()"

k=K

forms the connected set |0, (#')%], and the result follows. O

Example 8.2. If ¢t = 31/64, then (¢')'' < !0 but (¢)'? > t'!. Indeed, the
quantity
log t/
logt — log t/
appearing within the right-hand side of (8.1) is approximately 10.595 in this
case. Thus [0, (23)M] lies in A.

Remark 8.3. Note that when

ot

0<t§3_2\[,

(8.1) yields K = 1.
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Proposition 8.4. Let 0 < t < 1/2 be a threshold. Then the closed real unit inter-
val I, under the threshold-convex combinations of Definition 4.1, is generated

by {0,1}.

Proof. With K as in (8.1), set L = (#)%. Consider the open interval U =]0, L.
By Lemma 8.1, each element of U may be generated from {0, 1}. By symmetry,
each element of U’ =]1—L, 1[ may be generated from {0, 1}. On the other hand,
each element of the dyadic unit interval Dy = {m2™" € I | m,n € N} may

also be generated from {0, 1}, merely using the operation 1/2.

Now let « be an arbitrary element of ]%, %[ Since the set Dy is dense in

I,thereisanelementdof]DlWithx—é<d<x.Thusd<x<d+%.Then
L 1
€|d,d+=|=U(2d) =
x ] +2[ ( )2

shows that 2 may be generated from {0,1}. By symmetry, each element of
]2,1— £[ may also be generated from {0, 1}. Since

L1 1 L
IChuUuUU U |=,2| U |=,1-=
e 1 :|272|: :|27 2|:7

it follows that the entire interval I is generated by {0,1}. O

Theorem 8.5. Let 0 < t < 1/2 be a threshold. Then each simplex, under the
threshold-convex combinations of Definition 4.1, is generated by its extreme
points.

Proof. The proof is by induction on the dimension n of the simplex. For n = 0,
the result is trivial. For n = 1, it follows by Proposition 8.4. Suppose that the
result is true for a positive dimension n. Consider the (n + 1)-dimensional
simplex A,, ;1 consisting of all real convex combinations of an n-dimensional
face A, and an opposing vertex v. Thus an arbitrary point x of A, lies on
a line segment [ leading from a point p of A, to v. By Proposition 8.4, the
point x is generated by threshold-convex combinations of p and the extreme
point v of A, 7. By induction, the point p is generated by threshold-convex
combinations of extreme points of A,,, which of course are also extreme points
of A, 41. Thus x is generated by threshold-convex combinations of extreme
points of A, 4. O

9. The variety B* with 0 < t < 1/2

The aim of this section is to characterize the variety B! of threshold-¢ alge-
bras for 0 < ¢t < 1/2. First note that the extreme operations of threshold-t
algebras have no influence on the generation of the algebras considered in
Proposition 8.4 and Theorem 8.5. This has an important consequence.

Definition 9.1. Let B!, be the variety generated by the reducts (C, [t,t'])

of threshold-t convex sets with respect to moderate threshold combinations.
Members of B, are called t-moderate barycentric algebras.
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Note the following consequence of Theorem 8.5.

Corollary 9.2. Suppose that 0 < t < 1/2 is a threshold. Then each simplez is
generated by its extreme points under the moderate threshold-conver combina-
tions of Definition 4.1.

Proposition 9.3. Suppose that 0 < t < 1/2 is a threshold. Then each variety
Bt 4 of t-moderate barycentric algebras is equivalent to the variety B of usual

barycentric algebras.

Proof. Certainly the [t,t']-reduct of each barycentric algebra (A, I°) is a mod-

erate barycentric algebra.
Now consider the variety B, of moderate barycentric algebras for the
given threshold t. By Proposition 8.4 | the operations of [t,t'] = [t,t'] generate

the operations of I°, which are all the binary operations of barycentric algebras.
The variety B!, is generated by convex sets. Under the derived operations
of I°, they are usual convex sets, satisfy skew-associativity, and generate the
variety B of barycentric algebras. O

The following theorem may be proved in similar fashion to Theorem 7.2.

Theorem 9.4. Set a threshold 0 <t < 1/2. Then each variety Bt of threshold-
t barycentric algebras is equivalent to the variety B of extended barycentric
algebras.

As another consequence of Proposition 8.4 and Theorem 8.5, one obtains
the following.

Theorem 9.5. For a threshold 0 < t < 1/2, the variety B' is defined by the

following identities:

(a) Idempotence, skew-commutativity and entropicity for all operations of I°;

(b) The identity xyr = x for each small operation r; ;

(¢) The identity zyr =y for each large operation r;

(d) Skew-associativﬁy for (derived) binary opemtio;zs generated by the moder-
ate operations T fort <r<t.

Proof. By the results of Section 4, members of the variety B! satisfy the identi-
ties of items (a), (b) and (c). By Proposition 8.4 and Theorem 8.5, they satisfy
skew-associativity for (derived) binary operations generated by the moderate
operations r for t < r < t'. Note that this set of operations coincides with the
set of operations r for r € I°.

Now consider algebras (A, I°) of the type of Bf-algebras satisfying the
identities of items (a), (b) and (c), with extreme operations, small for 0 < r < ¢
and large for t' < r < 1, and skew-associativity for (derived) binary operations
generated by the moderate operations r for ¢ < r < t/. Then under these
derived binary operations, members (A, I°) of the variety V lie in the variety of
usual barycentric algebras. By Theorem 9.4, the variety B! may be considered
as the variety of usual barycentric algebras additionally equipped with the
extreme operations. Hence, the variety V', considered as the variety of algebras



Vol. 79 (2018) Axiomatization of convexity Page 13 of 20 22

with moderate operations r = r for t < r < t/ and the original extreme

operations, is the variety B? of threshold-t barycentric algebras. O

The skew-associativity that appears in Theorem 9.5(d) concerns the de-
rived binary operations, but not the basic extreme binary operations. In prin-
ciple, one could write out the corresponding identities explicitly, with repeated
use of the moderate basic operations, but the expressions involved would be
very complicated.

10. Threshold-t semilattices

Recall that each barycentric algebra has its semilattice replica as a homomor-
phic image. Moreover the following theorem holds.

Theorem 10.1 [11], [16, Th. 7.6.1]. The variety B of barycentric algebras con-
tains only one proper non-trivial subvariety, namely the variety S of (stam-
mered) semilattices.

As each of the varieties Bt, for 0 < t < 1/2, may be considered as the
variety of barycentric algebras with additional extreme operations, it is easy to
see that each member of such a variety also has a semilattice replica, however
equipped additionally with extreme operations of the type of Bt-algebras. This
leads to the following definition.

Definition 10.2. Let 0 < ¢ < 1/2 be a threshold. A threshold-t barycentric
algebra is a threshold-t semilattice if all moderate operations coincide and are
semilattice operations.

Proposition 10.3. Let 0 <t < 1/2 be a threshold. Then, relative to the variety
of threshold-t barycentric algebras, threshold-t semilattices form a subvariety
St defined by the following identities:

(a) Equality between the respective moderate operations p, fort <p <t';

b) Associativity for each moderate operation p, fort <p < t'.
( Y p

Proof. For 0 < t < 1/2, idempotence of the moderate operations follows
directly by Theorem 9.5(a). Then again by Theorem 9.5(a), one has skew-
commutativity for the moderate operations. Given equality of the moderate
operations, and the symmetry of the interval [¢,¢'], their commutativity fol-
lows.

For the case t = 1/2, where 1/2 is the only moderate operation, the

identities of Proposition 10.3(a) vanish, while Proposition 10.3(b) just specifies
the associative law for the commutative binary mode operation 17/2

By Remark 4.2, the case t = 0 reduces to the usual situation for extended
barycentric algebras, where the equalities (a) suffice, and the associativity (b)
then follows from the skew-associativity. O
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Remark 10.4. If ¢ = 0, then the variety S° is the variety S of (stammered)
semilattices. If ¢ # 0, then the variety S* is equivalent to the variety of (stam-
mered) semilattices equipped with additional extreme operations r for r < t
and r > t'.

As a direct consequence of Theorem 10.1, one obtains the following. Recall
(Section 7) that the variety B'/2 contains infinitely many subvarieties.

Corollary 10.5. Consider a threshold 0 < t < 1/2. Then the variety B of
threshold-t barycentric algebras contains only one proper non-trivial subvariety,
namely the variety St of threshold-t semilattices.

Extended semilattices may be defined in similar fashion to extended
barycentric algebras and extended commutative binary modes. In particular,
we have the following analogue of Theorems 7.2 and 9.4.

Proposition 10.6. For each positive threshold t, the variety St of threshold-t
semilattices is equivalent to the variety S of extended semilattices.

11. Barycentric words and identities

For 0 < t < 1/2, let SC" be the variety of algebras of type I° x {2}, defined by
the identities of idempotence, skew-commutativity (2.2) and entropicity (3.1)
for all operations of I°, along with the left-zero identities for all operations p

with 0 < p < ¢ and right-zero identities for all operations p with ¢ < p < 1.

In particular, for t = 0, there are no extreme operations, and SC° coincides
with the variety SC of skew-commutative modes of type I° x {2}. On the other
hand, if ¢ = 1/2, then all the operations p for p # 1/2 are extreme. Note that

the varieties SC' form a chain, where for 0 # ¢ < u, one has SC* < SC*, and
SC! < SC° = SC for all t # 0. Each variety B' is a subvariety of SC. For
t = 1/2, the varieties BY/2 and SC/? coincide.

Note also that idempotence and entropicity alone do not define the variety
SC. For example, consider an I°-algebra (A, I°), where for each p € I°, one
has zyp = . While the algebra A is idempotent and entropic, it is not skew-
commutative.

Proposition 11.1. For each 0 < t < 1/2, the variety Bt is a proper subvariety
of the variety SC*.

Proof. First, note that the variety B = B° is a proper subvariety of SC. Now
assume that t # 0. It suffices to provide an example of an algebra which belongs
to SC', but not to Bf. Let A be the algebra (I,1°) defined on the real unit
interval I with I°-operations defined as follows:

T if p<t;
zyt ift<p<u
ryp=qayp if u<p < (11.1)
; zyt’ ifu <p<t

Yy if p>t
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for 0 < p < 1landt < u < 1/2. Simple calculations show that the algebra
A satisfies the identities defining the variety SC’, but it is not a threshold-¢
barycentric algebra. O

We will now describe free SC'-algebras for ¢t # 0. Consider a countable
set X = {x; | 0 < i € Z} of variables. Let 7 denote the set of finite, binary
rooted trees. For an element T' € 7, let T} denote the set of leaves of T'. Let
T, denote the set of nodes of T', including the root. Then let Ay or A: T} — X
and vy or v: T,, — I° be functions. Each such function pair (Ar,vr), for each
element T' € 7, specifies a word in the language of SC-algebras recursively as
follows.

Definition 11.2. Let T be a binary rooted tree.

(a) If T has a unique vertex, then 7} is a singleton and T, is empty. If the
unique value of Ay is x;, then that variable is the word specified by the
function pair (Ar, vr).

(b) Suppose that a rooted binary tree T' with root r joins subtrees T’ and
T" in order. Then the set T; of leaves of T is the disjoint union of the
respective sets T) and T}” of leaves of 7" and T", while the set T, of nodes
of T is the disjoint union of T, and T, with the singleton {r}. Suppose
that the components of a function pair (Ap,vr) restrict to respective
function pairs (Ag/,vp) and (Aps, vp/), along with a function {r} — I°
taking the unique value p. Then if the respective barycentric words
and v are specified by (A7, vy/) and (A, vr/), the function pair (Ar, vr)
specifies the word ww p.

A tree T € T is complete if each non-leaf node has two children, and all
leaves have the same level. The word specified by a complete tree is also called
complete. Note that for a complete tree of height h, the number of leaves is
equal to [ = 2", and the number of nodes is n = 2"+ — 1.

Let W be the set of words specified by the trees of 7. In a variety SC,
with threshold 0 < ¢ < 1/2, such words may be reduced to certain special
words. First note that by skew-commutativity, for any words w; and ws and
any large operation p, the SC'-algebras satisfy wwsp = wow; p’, where p’ is
small. This allows us to change all appearances of large operations in w into
small ones. Next, observe that each small operation p satisfies xyp = x, and
more generally wiws p = wi. This allows one to replace each appearance of
subwords of the form wjwsp in w by wi. In this way, one obtains a word

w? without symbols of extreme operations, and with all operation symbols
belonging to the set [¢,t']. Then, using the idempotent laws for all operations

of [t,#'], one may extend the word w! to a complete word w? as follows. If w?

contains a subword of the form u = zvp, where v is already a complete word
specified by a tree T with the function pair (Ar,vr), replace x with the word
vy specified by the tree T” with the function pair (A1, vr+) such that vy = vy,
and with A7/ assigning the variable z to each leaf of T’. The word w! obtained
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in this way from w is called the canonical form of w. Summarizing, one obtains
the following proposition.

Proposition 11.3. Set a threshold 0 < t < 1/2. Then for each word w € W,
the variety SC' satisfies the identity

— ot
w = W,

where w is the canonical form of w.

Recall that the word w!, does not contain symbols of extreme operations, but
only symbols of operations belonging to [t,#'].

Corollary 11.4. The free SC'-algebra on the set X consists of canonical forms
of words in W.

Proof. The proof is by induction on the number n of operational symbols p

from the set [t,#/]. If n = 1, then the words have the form z;z»p, where

p € [t,t'] and z1 and xo may be equal or different. Hence they are in canonical
form. A longer element not in canonical form may be expressed as wjwap,

where wy and wy are canonical words, and p € I°. If p is a small operation,
then wywap = wy, while if p is a large operation, then ujlwgg = ws, and hence
both are in canonical form. Finally, if p is a moderate operation, then wiwWap

is in canonical form. O

Corollary 11.5. Set a threshold 0 < t < 1/2. Then for each word w € W, the
variety Bt satisfies the identity

ot
w = W,

where all operation symbols of w' belong to the set [t,t'] = [t,t']. In particular,

t : : t
wy, determines an operation of B, . ,-algebras.

12. Varieties of threshold algebras

Recall that for a threshold ¢, the symbol S¢ denotes the variety of threshold-t
semilattices.

Proposition 12.1. For any two thresholds s and t with 0 < s < t < 1/2, the
varieties S and St are incomparable. Moreover, the meet S AS? is the variety
T of trivial algebras.

Proof. First note that if 0 < s < ¢t < 1/2, then the set of extreme operation
symbols of St-algebras contains the set of extreme operation symbols of S*-
algebras. Hence the set of identities defining extreme operations of St contains
the set of identities defining extreme operations of §*. To show that S® and
St are incomparable, consider an operation r for s < r < t. Then the identity
zyr = x holds in S?, but is not satisfied in S*. On the other hand, the variety
8¢ satisfies the commutative law 2y r = yx r, which is not satisfied in S*. The
same laws may be used to show that the meet S* A St is trivial. Indeed, the
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meet S* A S* satisfies all identities true in % and in S*, and hence = = zyr =
yrr =1y. O

Corollary 12.2. The varicties St of threshold-t semilattices form an antichain.
The meet of all St is the trivial variety T .

Theorem 12.3. For any two thresholds s and t with 0 < s < t < 1/2, the
varieties B and Bt of threshold algebras are incomparable. Moreover, the meet
BS A Bt is the variety T of trivial algebras.

Proof. If t # 1/2, then it is apparent from Corollary 10.5 and Proposition 12.1
that the varieties B and B? are incomparable and the variety B AB? is trivial.

The only case to consider is t = 1/2. Let s < t = 1/2. Then for each
dyadic number d with s < d < 1/2, there is a word zyw in the language of
commutative binary modes such that xyw = xy d. The variety B* satisfies the
identity

Tyw = wyd,
but B'/2 does not. Consequently, the varieties B* and B! are incomparable. [

Corollary 12.4. For t € [0,1/2], the varieties B' of threshold-t barycentric
algebras form an antichain. The meet of all Bt is the trivial variety T .

Note that for ¢ # 0, each variety B! and its subvariety S are strongly
irregular. By the theory of regularized varieties (see e.g. [16, §4.3]), it follows
that for ¢t # 0, the regularization B’ of any variety B, and similarly the
regularization St of any variety S?, consists precisely of Plonka sums of algebras
in the original variety, and is defined by the regular identities true in that
variety. The regularization is the join of the original variety and the variety
S of semilattices. Note also that in the regularization, the left-zero operations
become left-normal operations, and the right-zero operations become right-
normal operations [16, §4.3]).

In what follows, we will be interested in joins of varieties B?.

Definition 12.5. Set thresholds 0 < s < ¢ < 1/2. Set B%! to be the variety of
idempotent, entropic, skew-commutative I °-algebras defined by the following
identities:
(1) zyp=x for all p < s;
(2) xy;E: y for all p > s';
(3) all identities true in the variety B, of Definition 9.1.
The algebra (I,1°) with appropriately defined extremal operations may

be a member of any variety B!. As a member of B¢ for ¢t # 0, it will be denoted
by It.

Theorem 12.6. For thresholds 0 < s < t < 1/2, the join BV Bt of the variceties
B and Bt is equal to the variety B**t.
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Proof. First recall that for any 0 < r < 1/2, each B"-algebra satisfies the
identity zyp = x for all p < r, and all identities true in Bf , for ¢ > r. Since

mod
s < t, it follows by Definition 12.5 that any identity true in B% is satisfied in
both the varieties B% and B?, and hence in BV B¢. Consequently, B*V Bt < B¢,
To verify the converse inequality, we will show that each identity true in
both B% and B! (and hence in B V B?) is also satisfied in B*?. First note that
all left-zero and all right-zero identities true in B¢ also hold in B* V B!, and in
Bts.
Now let
w=v (12.1)
be an identity satisfied in B*V B! containing operation symbols p for s < p < 5.
Using skew-commutativity, we may reduce this identity to an identity without
large extreme operations. So in what follows, we assume that all the symbols
of extreme operations appearing in (12.1) are symbols of left-zero operations.
If all the operation symbols appearing in (12.1) belong to [t,t'], then

the identity is satisfied by all Bf-algebras, and hence by all B! -algebras.
Consequently, it holds in all B*!-algebras. It follows that if the identity (12.1)
contains only symbols of left-zero operations p for all p < s, and/or operations

from the set [£,#'], then it holds in all B*'-algebras.

In what follows, assume that (12.1) contains operation symbols p only in

the range s < p < §'. First assume that one side of (12.1), say w, contains
only operation symbols p for s < p < ¢, and the other contains some p with

t < p <t'. Consider the Bl-algebra I'. Substitute 0 and 1 for the variables of
(12.1) in any way. Then in I, w(0,1) = 0, while v(0,1) > 0, contradicting the
fact that (12.1) holds in Bt. Thus if one side contains only p with s < p < t,
then the same holds also for the other side. a

So now assume that both sides of (12.1) contain some operations from
[t,t'], or all operation symbols of (12.1) are from [s,t]. By Proposition 9.3,

each operation p for s < p <t may be written as a composition of operations

gfort <q< t'. Hence the identity may be written as an identity true in all
Bt algebras. O

Corollary 12.7. Let 0 < s,t,u,w < 1/2 be thresholds, and let s < t and u < w.
Then the variety B*' is a subvariety of B“Y if and only if u < s <t < w.

Proof. First assume that u < s < t < w. Note that each B%‘-algebra A satisfies

all identities true in Bt _,, and moreover zy p =z for all p < u. Hence A is a

member of B“%, and consequently B!t < B4,

Now let B*! < B%*. Assume on the contrary that u > s or ¢t > w. First
let u > s. Note that the B*-algebra I® is a member of B*!, and hence of B“*.
In particular, each B*®-algebra has to satisfy the identity xyp = z for each

p €]s,u[. However, in the algebra I°, we have 01p = 01p # 0, a contradiction.

Now assume that t > w. Then each Bt—aljgebra, and in particular the
algebra I*, must be a member of B“* and has to satisfy each identity true in
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B ,-algebras. Thus in the B*™-algebra I*, we should have 01p=01p=pfor

each w < p < t. However, this is not true, since in the Bt—alggbra It we have
01p = 0. We again obtain a contradiction. Consequently, u < s <t <w. [0

Corollary 12.8. The join of the varieties B>t is the variety B%'/?, equivalent
to the variety CBM of commutative binary modes.

Proof. Certainly each B**, for any s and t, is a subvariety of the variety B%1/2.

Now the family of all B%* contains each of the varieties B%f. Thus the join of
all the varieties B*! cannot have extremal operations, and since the operation
1/72 is the only moderate operation common to all the varieties B, the only

moderate operation of the join is 1/2. O
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