Skip to main content
Log in

Endoplasmic reticulum stress: a vital process and potential therapeutic target in chronic obstructive pulmonary disease

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Chronic obstructive pulmonary disease (COPD), a chronic and progressive disease characterized by persistent respiratory symptoms and progressive airflow obstruction, has attracted extensive attention due to its high morbidity and mortality. Although the understanding of the pathogenesis of COPD has gradually increased because of increasing evidence, many questions regarding the mechanisms involved in COPD progression and its deleterious effects remain unanswered. Recent advances have shown the potential functions of endoplasmic reticulum (ER) stress in causing airway inflammation, emphasizing the vital role of unfolded protein response (UPR) pathways in the development of COPD.

Methods

A comprehensive search of major databases including PubMed, Scopus, and Web of Science was conducted to retrieve original research articles and reviews related to ER stress, UPR, and COPD.

Results

The common causes of COPD, namely cigarette smoke (CS) and air pollutants, induce ER stress through the generation of reactive oxygen species (ROS). UPR promotes mucus secretion and further plays a dual role in the cell apoptosis-autophagy axis in the development of COPD. Existing drug research has indicated the potential of UPR as a therapeutic target for COPD.

Conclusions

ER stress and UPR activation play significant roles in the etiology, pathogenesis, and treatment of COPD and discuss whether related genes can be used as biomarkers and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the authors.

References

  1. Labaki WW, Rosenberg SR. Chronic obstructive pulmonary disease. Ann Intern Med. 2020;173:ITC17–32.

    Article  PubMed  Google Scholar 

  2. Rabe KF, Watz H. Chronic obstructive pulmonary disease. Lancet. 2017;389:1931–40.

    Article  PubMed  Google Scholar 

  3. O’Donnell DE. Hyperinflation, dyspnea, and exercise intolerance in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2006;3:180–4.

    Article  PubMed  Google Scholar 

  4. Eriksson S. Alpha 1-antitrypsin deficiency. J Hepatol. 1999;30(Suppl 1):34–9.

    PubMed  Google Scholar 

  5. Lamprecht B, McBurnie MA, Vollmer WM, Gudmundsson G, Welte T, Nizankowska-Mogilnicka E, et al. COPD in never smokers: results from the population-based burden of obstructive lung disease study. Chest. 2011;139:752–63.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rennard SI, Vestbo J. COPD: the dangerous underestimate of 15%. Lancet. 2006;367:1216–9.

    Article  PubMed  Google Scholar 

  7. Anzueto A, Miravitlles M. The role of fixed-dose dual bronchodilator therapy in treating COPD. Am J Med. 2018;131:608–22.

    Article  CAS  PubMed  Google Scholar 

  8. Lahousse L. Personalizing oral corticosteroid dose in severe COPD exacerbations. Chest. 2021;160:1581–2.

    Article  PubMed  Google Scholar 

  9. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–128.

    Article  PubMed  Google Scholar 

  10. Lin S, Meng T, Huang H, Zhuang H, He Z, Yang H, et al. Molecular machineries and physiological relevance of ER-mediated membrane contacts. Theranostics. 2021;11:974–95.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schwarz DS, Blower MD. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci. 2016;73:79–94.

    Article  CAS  PubMed  Google Scholar 

  12. Chambers JE, Marciniak SJ. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 2. Protein misfolding and ER stress. Am J Physiol Cell Physiol. 2014;307:657–70.

    Article  Google Scholar 

  13. Lin Y, Jiang M, Chen W, Zhao T, Wei Y. Cancer and ER stress: mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed Pharmacother. 2019;118: 109249.

    Article  CAS  PubMed  Google Scholar 

  14. Yong J, Johnson JD, Arvan P, Han J, Kaufman RJ. Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus. Nat Rev Endocrinol. 2021;17:455–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol. 2018;69:927–47.

    Article  CAS  PubMed  Google Scholar 

  16. Ribeiro CMP, Oneal WK. Endoplasmic reticulum stress in chronic obstructive lung diseases. CMM. 2012;12:872–82.

    Article  CAS  Google Scholar 

  17. Barnes PJ. Inflammatory endotypes in COPD. Allergy. 2019;74:1249–56.

    Article  PubMed  Google Scholar 

  18. Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138:16–27.

    Article  CAS  PubMed  Google Scholar 

  19. Wang C, Zhou J, Wang J, Li S, Fukunaga A, Yodoi J, et al. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther. 2020;5:248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pelaia C, Vatrella A, Gallelli L, Lombardo N, Sciacqua A, Savino R, et al. Role of p38 mitogen-activated protein kinase in asthma and COPD: pathogenic aspects and potential targeted therapies. Drug Des Devel Ther. 2021;15:1275–84.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nadel JA. Role of neutrophil elastase in hypersecretion during COPD exacerbations, and proposed therapies. Chest. 2000;117:386S-S389.

    Article  CAS  PubMed  Google Scholar 

  22. De Filippo K, Rankin SM. The secretive life of neutrophils revealed by intravital microscopy. Front Cell Dev Biol. 2020;8: 603230.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Redhu NS, Gounni AS. Function and mechanisms of TSLP/TSLPR complex in asthma and COPD. Clin Exp Allergy. 2012;42:994–1005.

    Article  CAS  PubMed  Google Scholar 

  24. Tworek D, Majewski S, Szewczyk K, Kiszałkiewicz J, Kurmanowska Z, Górski P, et al. The association between airway eosinophilic inflammation and IL-33 in stable non-atopic COPD. Respir Res. 2018;19:108.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Barnes PJ. Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2018;18:454–66.

    Article  CAS  PubMed  Google Scholar 

  26. Saetta M, Baraldo S, Corbino L, Turato G, Braccioni F, Rea F, et al. CD8+ve cells in the lungs of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;160:711–7.

    Article  CAS  PubMed  Google Scholar 

  27. Di Stefano A, Ricciardolo FLM, Caramori G, Adcock IM, Chung KF, Barnes PJ, et al. Bronchial inflammation and bacterial load in stable COPD is associated with TLR4 overexpression. Eur Respir J. 2017;49:1602006.

    Article  PubMed  Google Scholar 

  28. Cornwell WD, Kim V, Song C, Rogers TJ. Pathogenesis of inflammation and repair in advanced COPD. Semin Respir Crit Care Med. 2010;31:257–66.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yao R-Q, Ren C, Xia Z-F, Yao Y-M. Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles. Autophagy. 2021;17:385–401.

    Article  CAS  PubMed  Google Scholar 

  30. Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol. 2015;10:173–94.

    Article  CAS  PubMed  Google Scholar 

  31. Frakes AE, Dillin A. The UPRER: sensor and coordinator of organismal homeostasis. Mol Cell. 2017;66:761–71.

    Article  CAS  PubMed  Google Scholar 

  32. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000;2:326–32.

    Article  CAS  PubMed  Google Scholar 

  33. Pan T, Zhang L, Miao K, Wang Y. A crucial role of endoplasmic reticulum stress in cellular responses during pulmonary arterial hypertension. 2020;12(5):1481–90.

  34. Rashid H-O, Yadav RK, Kim H-R, Chae H-J. ER stress: autophagy induction, inhibition and selection. Autophagy. 2015;11:1956–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang M, Kaufman RJ. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature. 2016;529:326–35.

    Article  CAS  PubMed  Google Scholar 

  36. Park S-M, Kang T-I, So J-S. Roles of XBP1s in transcriptional regulation of target genes. Biomedicines. 2021;9:791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maurel M, Chevet E, Tavernier J, Gerlo S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci. 2014;39:245–54.

    Article  CAS  PubMed  Google Scholar 

  38. Carew NT, Nelson AM, Liang Z, Smith SM, Milcarek C. Linking endoplasmic reticular stress and alternative splicing. Int J Mol Sci. 2018;19:E3919.

    Article  Google Scholar 

  39. Borghi A, Verstrepen L, Beyaert R. TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death. Biochem Pharmacol. 2016;116:1–10.

    Article  CAS  PubMed  Google Scholar 

  40. Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T, et al. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 2002;16:452–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 1999;10:3787–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107:881–91.

    Article  CAS  PubMed  Google Scholar 

  43. Cavener DR, Gupta S, McGrath BC. PERK in beta cell biology and insulin biogenesis. Trends Endocrinol Metab. 2010;21:714–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2α kinases: their structures and functions. Cell Mol Life Sci. 2013;70:3493–511.

    Article  CAS  PubMed  Google Scholar 

  45. Han J, Back SH, Hur J, Lin Y-H, Gildersleeve R, Shan J, et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol. 2013;15:481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hu H, Tian M, Ding C, Yu S. The C/EBP Homologous Protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol. 2018;9:3083.

    Article  CAS  PubMed  Google Scholar 

  47. Fan Y, Simmen T. Mechanistic connections between Endoplasmic Reticulum (ER) redox control and mitochondrial metabolism. Cells. 2019;8:E1071.

    Article  Google Scholar 

  48. Jorgensen E, Stinson A, Shan L, Yang J, Gietl D, Albino AP. Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells. BMC Cancer. 2008;8:229.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Min T, Bodas M, Mazur S, Vij N. Critical role of proteostasis-imbalance in pathogenesis of COPD and severe emphysema. J Mol Med (Berl). 2011;89:577–93.

    Article  CAS  PubMed  Google Scholar 

  50. Weidner J, Jarenbäck L, Åberg I, Westergren-Thorsson G, Ankerst J, Bjermer L, et al. Endoplasmic reticulum, Golgi, and lysosomes are disorganized in lung fibroblasts from chronic obstructive pulmonary disease patients. Physiol Rep. 2018;6: e13584.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Geraghty P, Wallace A, D’Armiento JM. Induction of the unfolded protein response by cigarette smoke is primarily an activating transcription factor 4-C/EBP homologous protein mediated process. Int J Chron Obstruct Pulmon Dis. 2011;6:309–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fratta Pasini AM, Ferrari M, Stranieri C, Vallerio P, Mozzini C, Garbin U, et al. Nrf2 expression is increased in peripheral blood mononuclear cells derived from mild-moderate ex-smoker COPD patients with persistent oxidative stress. Int J Chron Obstruct Pulmon Dis. 2016;11:1733–43.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Becker EJ, Faiz A, van den Berge M, Timens W, Hiemstra PS, Clark K, et al. Bronchial gene expression signature associated with rate of subsequent FEV1 decline in individuals with and at risk of COPD. Thorax. 2022;77:31–9.

    Article  PubMed  Google Scholar 

  54. Kenche H, Baty CJ, Vedagiri K, Shapiro SD, Blumental-Perry A. Cigarette smoking affects oxidative protein folding in endoplasmic reticulum by modifying protein disulfide isomerase. FASEB J. 2013;27:965–77.

    Article  CAS  PubMed  Google Scholar 

  55. Aksoy MO, Kim V, Cornwell WD, Rogers TJ, Kosmider B, Bahmed K, et al. Secretion of the endoplasmic reticulum stress protein, GRP78, into the BALF is increased in cigarette smokers. Respir Res. 2017;18:78.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94:909–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y, et al. ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev. 2016;2016:4350965.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yin M, O’Neill LAJ. The role of the electron transport chain in immunity. FASEB J. 2021;35: e21974.

    Article  CAS  PubMed  Google Scholar 

  59. He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 2017;44:532–53.

    Article  PubMed  Google Scholar 

  60. Ottaviano FG, Handy DE, Loscalzo J. Redox regulation in the extracellular environment. Circ J. 2008;72:1–16.

    Article  CAS  PubMed  Google Scholar 

  61. Dreher D, Junod AF. Role of oxygen free radicals in cancer development. Eur J Cancer. 1996;32A:30–8.

    Article  CAS  PubMed  Google Scholar 

  62. Sajadimajd S, Khazaei M. Oxidative stress and cancer: the role of Nrf2. Curr Cancer Drug Targets. 2018;18:538–57.

    Article  CAS  PubMed  Google Scholar 

  63. Kasai S, Shimizu S, Tatara Y, Mimura J, Itoh K. Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology. Biomolecules. 2020;10:E320.

    Article  Google Scholar 

  64. Hayes JD, McMahon M. Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention. Cancer Lett. 2001;174:103–13.

    Article  CAS  PubMed  Google Scholar 

  65. Laing S, Wang G, Briazova T, Zhang C, Wang A, Zheng Z, et al. Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. Am J Physiol Cell Physiol. 2010;299:C736-749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Traboulsi H, Guerrina N, Iu M, Maysinger D, Ariya P, Baglole CJ. Inhaled pollutants: the molecular scene behind respiratory and systemic diseases associated with ultrafine particulate matter. Int J Mol Sci. 2017;18:E243.

    Article  Google Scholar 

  67. Shavelle RM, Paculdo DR, Kush SJ, Mannino DM, Strauss DJ. Life expectancy and years of life lost in chronic obstructive pulmonary disease: findings from the NHANES III follow-up study. Int J Chron Obstruct Pulmon Dis. 2009;4:137–48.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Moran-Mendoza O, Pérez-Padilla JR, Salazar-Flores M, Vazquez-Alfaro F. Wood smoke-associated lung disease: a clinical, functional, radiological and pathological description. Int J Tuberc Lung Dis. 2008;12:1092–8.

    CAS  PubMed  Google Scholar 

  69. Jindal SK, Aggarwal AN, Jindal A. Household air pollution in India and respiratory diseases: current status and future directions. Curr Opin Pulm Med. 2020;26:128–34.

    Article  PubMed  Google Scholar 

  70. Kesimer M, Ford AA, Ceppe A, Radicioni G, Cao R, Davis CW, et al. Airway mucin concentration as a marker of chronic bronchitis. N Engl J Med. 2017;377:911–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Adler KB, Tuvim MJ, Dickey BF. Regulated mucin secretion from airway epithelial cells. Front Endocrinol (Lausanne). 2013;4:129.

    Article  PubMed  Google Scholar 

  72. Martino MB, Jones L, Brighton B, Ehre C, Abdulah L, Davis CW, et al. The ER stress transducer IRE1β is required for airway epithelial mucin production. Mucosal Immunol. 2013;6:639–54.

    Article  CAS  PubMed  Google Scholar 

  73. Wang X, Yang X, Li Y, Wang X, Zhang Y, Dai X, et al. Lyn kinase represses mucus hypersecretion by regulating IL-13-induced endoplasmic reticulum stress in asthma. EBioMedicine. 2017;15:137–49.

    Article  PubMed  Google Scholar 

  74. Wang S, Jiang Z, Li L, Zhang J, Zhang C, Shao C. Ameliorative effects of eosinophil deficiency on immune response, endoplasmic reticulum stress, apoptosis, and autophagy in fungus-induced allergic lung inflammation. Respir Res. 2021;22:173.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Song S, Tan J, Miao Y, Li M, Zhang Q. Crosstalk of autophagy and apoptosis: involvement of the dual role of autophagy under ER stress. J Cell Physiol. 2017;232:2977–84.

    Article  CAS  PubMed  Google Scholar 

  76. Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I, et al. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis. 2010;1: e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yu H, Cheng Y, Zhang G, Wang X, Gu W, Guo X. p62-dependent autophagy in airway smooth muscle cells regulates metabolic reprogramming and promotes airway remodeling. Life Sci. 2021;266: 118884.

    Article  CAS  PubMed  Google Scholar 

  78. Chen Z-H, Kim HP, Sciurba FC, Lee S-J, Feghali-Bostwick C, Stolz DB, et al. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS One. 2008;3: e3316.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lv X. Chronic obstructive pulmonary disease and autophagy. :9.

  80. Vij N, Chandramani-Shivalingappa P, Van Westphal C, Hole R, Bodas M. Cigarette smoke-induced autophagy impairment accelerates lung aging, COPD-emphysema exacerbations and pathogenesis. Am J Physiol Cell Physiol. 2018;314:C73-87.

    Article  PubMed  Google Scholar 

  81. Zhu X-M, Wang Q, Xing W-W, Long M-H, Fu W-L, Xia W-R, et al. PM2.5 induces autophagy-mediated cell death via NOS2 signaling in human bronchial epithelium cells. Int J Biol Sci. 2018;14:557–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hou H-H, Wang H-C, Cheng S-L, Chen Y-F, Lu K-Z, Yu C-J. MMP-12 activates protease-activated receptor-1, upregulates placenta growth factor, and leads to pulmonary emphysema. Am J Physiol Lung Cell Mol Physiol. 2018;315:L432–42.

    Article  CAS  PubMed  Google Scholar 

  83. Mannam P, Rauniyar N, Lam TT, Luo R, Lee PJ, Srivastava A. MKK3 influences mitophagy and is involved in cigarette smoke-induced inflammation. Free Radic Biol Med. 2016;101:102–15.

    Article  CAS  PubMed  Google Scholar 

  84. He B, Chen Q, Zhou D, Wang L, Liu Z. Role of reciprocal interaction between autophagy and endoplasmic reticulum stress in apoptosis of human bronchial epithelial cells induced by cigarette smoke extract. IUBMB Life. 2019;71:66–80.

    Article  CAS  PubMed  Google Scholar 

  85. Li Z-Y, Wu Y-F, Xu X-C, Zhou J-S, Wang Y, Shen H-H, et al. Autophagy as a double-edged sword in pulmonary epithelial injury: a review and perspective. Am J Physiol Lung Cell Mol Physiol. 2017;313:L207–17.

    Article  PubMed  Google Scholar 

  86. Chen Z-H, Lam HC, Jin Y, Kim H-P, Cao J, Lee S-J, et al. Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema. Proc Natl Acad Sci USA. 2010;107:18880–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. B’chir W, Maurin A-C, Carraro V, Averous J, Jousse C, Muranishi Y, et al. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 2013;41:7683–99.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hiramatsu N, Messah C, Han J, LaVail MM, Kaufman RJ, Lin JH. Translational and posttranslational regulation of XIAP by eIF2α and ATF4 promotes ER stress-induced cell death during the unfolded protein response. Mol Biol Cell. 2014;25:1411–20.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Tagawa Y, Hiramatsu N, Kato H, Sakoh T, Nakajima S, Hayakawa K, et al. Induction of CCAAT/enhancer-binding protein-homologous protein by cigarette smoke through the superoxide anion-triggered PERK-eIF2α pathway. Toxicology. 2011;287:105–12.

    Article  CAS  PubMed  Google Scholar 

  90. Chaurasia M, Gupta S, Das A, Dwarakanath BS, Simonsen A, Sharma K. Radiation induces EIF2AK3/PERK and ERN1/IRE1 mediated pro-survival autophagy. Autophagy. 2019;15:1391–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ryter SW, Choi AMK. Autophagy in the lung. Proc Am Thorac Soc. 2010;7:13–21.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kania E, Pająk B, Orzechowski A. Calcium homeostasis and ER stress in control of autophagy in cancer cells. Biomed Res Int. 2015;2015: 352794.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lin L, Yin Y, Hou G, Han D, Kang J, Wang Q. Ursolic acid attenuates cigarette smoke-induced emphysema in rats by regulating PERK and Nrf2 pathways. Pulm Pharmacol Ther. 2017;44:111–21.

    Article  CAS  PubMed  Google Scholar 

  94. Thorburn A. Death receptor-induced cell killing. Cell Signal. 2004;16:139–44.

    Article  CAS  PubMed  Google Scholar 

  95. Shukla S, Saxena S, Singh BK, Kakkar P. BH3-only protein BIM: an emerging target in chemotherapy. Eur J Cell Biol. 2017;96:728–38.

    Article  CAS  PubMed  Google Scholar 

  96. Du H, Wolf J, Schafer B, Moldoveanu T, Chipuk JE, Kuwana T. BH3 domains other than Bim and Bid can directly activate Bax/Bak. J Biol Chem. 2011;286:491–501.

    Article  CAS  PubMed  Google Scholar 

  97. Shakeri R, Kheirollahi A, Davoodi J. Apaf-1: regulation and function in cell death. Biochimie. 2017;135:111–25.

    Article  CAS  PubMed  Google Scholar 

  98. Soriano JB, Zielinski J, Price D. Screening for and early detection of chronic obstructive pulmonary disease. Lancet. 2009;374:721–32.

    Article  PubMed  Google Scholar 

  99. Gut-Gobert C, Cavaillès A, Dixmier A, Guillot S, Jouneau S, Leroyer C, et al. Women and COPD: do we need more evidence? Eur Respir Rev. 2019;28: 180055.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wouters EFM, Wouters BBREF, Augustin IML, Houben-Wilke S, Vanfleteren LEGW, Franssen FME. Personalised pulmonary rehabilitation in COPD. Eur Respir Rev. 2018;27: 170125.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Beermann J, Piccoli M-T, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev. 2016;96:1297–325.

    Article  CAS  PubMed  Google Scholar 

  102. Chi Y, Di Q, Han G, Li M, Sun B. Mir-29b mediates the regulation of Nrf2 on airway epithelial remodeling and Th1/Th2 differentiation in COPD rats. Saudi J Biol Sci. 2019;26:1915–21.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hassan T, Carroll TP, Buckley PG, Cummins R, O’Neill SJ, McElvaney NG, et al. miR-199a-5p silencing regulates the unfolded protein response in chronic obstructive pulmonary disease and α1-antitrypsin deficiency. Am J Respir Crit Care Med. 2014;189:263–73.

    Article  CAS  PubMed  Google Scholar 

  104. De Smet EG, Van Eeckhoutte HP, Avila Cobos F, Blomme E, Verhamme FM, Provoost S, et al. The role of miR-155 in cigarette smoke-induced pulmonary inflammation and COPD. Mucosal Immunol. 2020;13:423–36.

    Article  PubMed  Google Scholar 

  105. Velasco-Torres Y, Ruiz V, Montaño M, Pérez-Padilla R, Falfán-Valencia R, Pérez-Ramos J, et al. Participation of the miR-22-HDAC4-DLCO axis in patients with COPD by tobacco and biomass. Biomolecules. 2019;9:837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang Y, Lyu X, Wu X, Yu L, Hu K. Long non-coding RNA PVT1, a novel biomarker for chronic obstructive pulmonary disease progression surveillance and acute exacerbation prediction potentially through interaction with microRNA-146a. J Clin Lab Anal. 2020;34: e23346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhou A-Y, Zhao Y-Y, Zhou Z-J, Duan J-X, Zhu Y-Z, Cai S, et al. Microarray analysis of long non-coding RNAs in lung tissues of patients with COPD and HOXA-AS2 promotes HPMECs proliferation via notch1. Int J Chron Obstruct Pulmon Dis. 2020;15:2449–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Poh TY, Mac Aogáin M, Chan AKW, Yii ACA, Yong VFL, Tiew PY, et al. Understanding COPD-overlap syndromes. Expert Rev Respir Med. 2017;11:285–98.

    Article  CAS  PubMed  Google Scholar 

  109. Osorio F, Lambrecht B, Janssens S. The UPR and lung disease. Semin Immunopathol. 2013;35:293–306.

    Article  CAS  PubMed  Google Scholar 

  110. Albert RK, Connett J, Bailey WC, Casaburi R, Cooper JAD, Criner GJ, et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med. 2011;365:689–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Poole PJ, Chacko E, Wood-Baker RWB, Cates CJ. Influenza vaccine for patients with chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2006;CD002733.

  112. Suh DH, Kim M, Kim HS, Chung HH, Song YS. Unfolded protein response to autophagy as a promising druggable target for anticancer therapy. Ann NY Acad Sci. 2012;1271:20–32.

    Article  CAS  PubMed  Google Scholar 

  113. Park SW, Ozcan U. Potential for therapeutic manipulation of the UPR in disease. Semin Immunopathol. 2013;35:351–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Valenzuela V, Jackson KL, Sardi SP, Hetz C. Gene therapy strategies to restore ER proteostasis in disease. Mol Ther. 2018;26:1404–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sado M, Yamasaki Y, Iwanaga T, Onaka Y, Ibuki T, Nishihara S, et al. Protective effect against Parkinson’s disease-related insults through the activation of XBP1. Brain Res. 2009;1257:16–24.

    Article  CAS  PubMed  Google Scholar 

  116. Mahalanobish S, Dutta S, Saha S, Sil PC. Melatonin induced suppression of ER stress and mitochondrial dysfunction inhibited NLRP3 inflammasome activation in COPD mice. Food Chem Toxicol. 2020;144: 111588.

    Article  CAS  PubMed  Google Scholar 

  117. Gf R, Il M. Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol Ther. 2014;141. https://pubmed.ncbi.nlm.nih.gov/24080471/

  118. Cazzola M, Rogliani P, Calzetta L, Hanania NA, Matera MG. Impact of mucolytic agents on COPD exacerbations: a pair-wise and network meta-analysis. COPD. 2017;14:552–63.

    Article  PubMed  Google Scholar 

  119. Suzuki Y, Saito J, Munakata M, Shibata Y. Hydrogen sulfide as a novel biomarker of asthma and chronic obstructive pulmonary disease. Allergol Int. 2021;70:181–9.

    Article  CAS  PubMed  Google Scholar 

  120. Lin F, Liao C, Sun Y, Zhang J, Lu W, Bai Y, et al. Hydrogen sulfide inhibits cigarette smoke-induced endoplasmic reticulum stress and apoptosis in bronchial epithelial cells. Front Pharmacol. 2017;8:675.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wang Y, Su N-X, Pan S-G, Ge X-P, Dai X-P. Fengbaisan suppresses endoplasmic reticulum stress by up-regulating SIRT1 expression to protect rats with chronic obstructive pulmonary diseases. Pharm Biol. 2020;58:878–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fan L, Li L, Yu X, Liang Z, Cai T, Chen Y, et al. Jianpiyifei II granules suppress apoptosis of bronchial epithelial cells in chronic obstructive pulmonary disease via inhibition of the reactive oxygen species-endoplasmic reticulum stress-Ca2+ signaling pathway. Front Pharmacol. 2020;11:581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Our work is supported by the National Natural Science Foundation of China (82100079, 81901713).

Author information

Authors and Affiliations

Authors

Contributions

LZ and KM contributed to conceptualization; HP, JL, and YW were involved in writing—original draft preparation; LZ and QZ contributed to writing—review and editing; and KM was involved in supervision. All authors gave their approval for the final manuscript to be published.

Corresponding authors

Correspondence to Ketao Mu or Lei Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Informed consent statement

Not applicable.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Zhou, Q., Liu, J. et al. Endoplasmic reticulum stress: a vital process and potential therapeutic target in chronic obstructive pulmonary disease. Inflamm. Res. 72, 1761–1772 (2023). https://doi.org/10.1007/s00011-023-01786-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01786-0

Keywords

Navigation