Skip to main content
Log in

Neuroinflammatory mediators in acquired epilepsy: an update

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Epilepsy is a group of chronic neurological disorders that have diverse etiologies but are commonly characterized by spontaneous seizures and behavioral comorbidities. Although the mechanisms underlying the epileptic seizures mostly remain poorly understood and the causes often can be idiopathic, a considerable portion of cases are known as acquired epilepsy. This form of epilepsy is typically associated with prior neurological insults, which lead to the initiation and progression of epileptogenesis, eventually resulting in unprovoked seizures. A convergence of evidence in the past two decades suggests that inflammation within the brain may be a major contributing factor to acquired epileptogenesis. As evidenced in mounting preclinical and human studies, neuroinflammatory processes, such as activation and proliferation of microglia and astrocytes, elevated production of pro-inflammatory cytokines and chemokines, blood–brain barrier breakdown, and upregulation of inflammatory signaling pathways, are commonly observed after seizure-precipitating events. An increased knowledge of these neuroinflammatory processes in the epileptic brain has led to a growing list of inflammatory mediators that can be leveraged as potential targets for new therapies of epilepsy and/or biomarkers that may provide valued information for the diagnosis and prognosis of the otherwise unpredictable seizures. In this review, we mainly focus on the most recent progress in understanding the roles of these inflammatory molecules in acquired epilepsy and highlight the emerging evidence supporting their candidacy as novel molecular targets for new pharmacotherapies of acquired epilepsy and the associated behavioral deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Devinsky O, Vezzani A, O’Brien TJ, Jette N, Scheffer IE, de Curtis M, Perucca P. Epilepsy Nat Rev Dis Primers. 2018;4:18024. https://doi.org/10.1038/nrdp.2018.24.

    Article  PubMed  Google Scholar 

  2. Jiang J, Santhakumar V, Zhu X. Editorial: Neuroinflammation in acquired epilepsy. Frontiers in Cell and Developmental Biology 2022; https://doi.org/10.3389/fcell.2022.1074537.

  3. Erisken S, Nune G, Chung H, Kang JW, Koh S. Time and age dependent regulation of neuroinflammation in a rat model of mesial temporal lobe epilepsy: Correlation with human data. Front Cell Dev Biol. 2022. https://doi.org/10.3389/fcell.2022.969364.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gage M, Gard M, Thippeswamy T. Characterization of cortical glial scars in the diisopropylfluorophosphate (DFP) rat model of epilepsy. Front Cell Dev Biol. 2022. https://doi.org/10.3389/fcell.2022.867949.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Patel DC, Thompson EG, Sontheimer H. Brain-derived neurotrophic factor inhibits the function of cation-chloride cotransporter in a mouse model of viral infection-induced epilepsy. Front Cell Dev Biol. 2022. https://doi.org/10.3389/fcell.2022.961292.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zilberter Y, Popova I, Zilberter M. Unifying mechanism behind the onset of acquired epilepsy. Trends Pharmacol Sci. 2022;43:87–96. https://doi.org/10.1016/j.tips.2021.11.009.

    Article  CAS  PubMed  Google Scholar 

  7. McNamara JO. Emerging insights into the genesis of epilepsy. Nature. 1999;399:A15-22. https://doi.org/10.1038/399a015.

    Article  CAS  PubMed  Google Scholar 

  8. Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, Hirsch E, Jain S, Mathern GW, Moshe SL, Nordli DR, Perucca E, Tomson T, Wiebe S, Zhang YH, Zuberi SM. ILAE classification of the epilepsies: position paper of the ILAE commission for classification and terminology. Epilepsia. 2017;58:512–21. https://doi.org/10.1111/epi.13709.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alyu F, Dikmen M. Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr. 2017;29:1–16. https://doi.org/10.1017/neu.2016.47.

    Article  PubMed  Google Scholar 

  10. Vezzani A, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol. 2019;15:459–72. https://doi.org/10.1038/s41582-019-0217-x.

    Article  CAS  PubMed  Google Scholar 

  11. Simonato M, Agoston DV, Brooks-Kayal A, Dulla C, Fureman B, Henshall DC, Pitkanen A, Theodore WH, Twyman RE, Kobeissy FH, Wang KK, Whittemore V, Wilcox KS. Identification of clinically relevant biomarkers of epileptogenesis - a strategic roadmap. Nat Rev Neurol. 2021;17:231–42. https://doi.org/10.1038/s41582-021-00461-4.

    Article  PubMed  Google Scholar 

  12. Löscher W, Klein P. The feast and famine: epilepsy treatment and treatment gaps in early 21st century. Neuropharmacology. 2020. https://doi.org/10.1016/j.neuropharm.2020.108055.

    Article  PubMed  Google Scholar 

  13. Yasmen N, Sluter MN, Yu Y, Jiang J. Ganaxolone for management of seizures associated with CDKL5 deficiency disorder. Trends Pharmacol Sci. 2023;44:128–9. https://doi.org/10.1016/j.tips.2022.11.007.

    Article  CAS  PubMed  Google Scholar 

  14. Temkin NR. Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia. 2001;42:515–24. https://doi.org/10.1046/j.1528-1157.2001.28900.x.

    Article  CAS  PubMed  Google Scholar 

  15. Sills GJ, Rogawski MA. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology. 2020. https://doi.org/10.1016/j.neuropharm.2020.107966.

    Article  PubMed  Google Scholar 

  16. Loscher W, Potschka H, Sisodiya SM, Vezzani A. Drug resistance in epilepsy: clinical impact, potential mechanisms, and New innovative treatment options. Pharmacol Rev. 2020;72:606–38. https://doi.org/10.1124/pr.120.019539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen Z, Brodie MJ, Liew D, Kwan P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study. JAMA Neurol. 2018;75:279–86. https://doi.org/10.1001/jamaneurol.2017.3949.

    Article  PubMed  Google Scholar 

  18. Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Koch WJ, Dumont AS. Biology of intracranial aneurysms: role of inflammation. J Cereb Blood Flow Metab. 2012;32:1659–76. https://doi.org/10.1038/jcbfm.2012.84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang J, Qiu J, Li Q, Shi Z. Prostaglandin E2 signaling: alternative target for glioblastoma? Trends Cancer. 2017;3:75–8. https://doi.org/10.1016/j.trecan.2016.12.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schimmel SJ, Acosta S, Lozano D. Neuroinflammation in traumatic brain injury: a chronic response to an acute injury. Brain Circ. 2017;3:135–42. https://doi.org/10.4103/bc.bc_18_17.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation. 2019;16:142. https://doi.org/10.1186/s12974-019-1516-2.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020;9:42. https://doi.org/10.1186/s40035-020-00221-2.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Alghamri MS, McClellan BL, Hartlage CS, Haase S, Faisal SM, Thalla R, Dabaja A, Banerjee K, Carney SV, Mujeeb AA, Olin MR, Moon JJ, Schwendeman A, Lowenstein PR, Castro MG. Targeting neuroinflammation in brain cancer: uncovering mechanisms, pharmacological targets, and neuropharmaceutical developments. Front Pharmacol. 2021. https://doi.org/10.3389/fphar.2021.680021.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hellenbrand DJ, Quinn CM, Piper ZJ, Morehouse CN, Fixel JA, Hanna AS. Inflammation after spinal cord injury: a review of the critical timeline of signalling cues and cellular infiltration. J Neuroinflammation. 2021;18:284. https://doi.org/10.1186/s12974-021-02337-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang J, Yu Y. Small molecules targeting cyclooxygenase/prostanoid cascade in experimental brain ischemia: Do they translate? Med Res Rev. 2021;41:828–57. https://doi.org/10.1002/med.21744.

    Article  CAS  PubMed  Google Scholar 

  26. Khan H, Sharma K, Kumar A, Kaur A, Singh TG. Therapeutic implications of cyclooxygenase (COX) inhibitors in ischemic injury. Inflamm Res. 2022;71:277–92. https://doi.org/10.1007/s00011-022-01546-6.

    Article  CAS  PubMed  Google Scholar 

  27. Klein P, Dingledine R, Aronica E, Bernard C, Blumcke I, Boison D, Brodie MJ, Brooks-Kayal AR, Engel J Jr, Forcelli PA, Hirsch LJ, Kaminski RM, Klitgaard H, Kobow K, Lowenstein DH, Pearl PL, Pitkanen A, Puhakka N, Rogawski MA, Schmidt D, Sillanpaa M, Sloviter RS, Steinhauser C, Vezzani A, Walker MC, Loscher W. Commonalities in epileptogenic processes from different acute brain insults: do they translate? Epilepsia. 2018;59:37–66. https://doi.org/10.1111/epi.13965.

    Article  CAS  PubMed  Google Scholar 

  28. Aronica E, Bauer S, Bozzi Y, Caleo M, Dingledine R, Gorter JA, Henshall DC, Kaufer D, Koh S, Loscher W, Louboutin JP, Mishto M, Norwood BA, Palma E, Poulter MO, Terrone G, Vezzani A, Kaminski RM. Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia. 2017;58(Suppl 3):27–38. https://doi.org/10.1111/epi.13783.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jankowsky JL, Patterson PH. The role of cytokines and growth factors in seizures and their sequelae. Prog Neurobiol. 2001;63:125–49. https://doi.org/10.1016/s0301-0082(00)00022-8.

    Article  CAS  PubMed  Google Scholar 

  30. Dey A, Kang X, Qiu J, Du Y, Jiang J. Anti-inflammatory small molecules to treat seizures and epilepsy: from bench to bedside. Trends Pharmacol Sci. 2016;37:463–84. https://doi.org/10.1016/j.tips.2016.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139(Suppl 2):136–53. https://doi.org/10.1111/jnc.13607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kan AA, de Jager W, de Wit M, Heijnen C, van Zuiden M, Ferrier C, van Rijen P, Gosselaar P, Hessel E, van Nieuwenhuizen O, de Graan PN. Protein expression profiling of inflammatory mediators in human temporal lobe epilepsy reveals co-activation of multiple chemokines and cytokines. J Neuroinflammation. 2012;9:207. https://doi.org/10.1186/1742-2094-9-207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Patterson KP, Brennan GP, Curran M, Kinney-Lang E, Dube C, Rashid F, Ly C, Obenaus A, Baram TZ. Rapid, Coordinate Inflammatory Responses after Experimental Febrile Status Epilepticus: Implications for Epileptogenesis. eNeuro 2015;2. https://doi.org/10.1523/ENEURO.0034-15.2015.

  34. Shi LM, Chen RJ, Zhang H, Jiang CM, Gong J. Cerebrospinal fluid neuron specific enolase, interleukin-1beta and erythropoietin concentrations in children after seizures. Childs Nerv Syst. 2017;33:805–11. https://doi.org/10.1007/s00381-017-3359-4.

    Article  PubMed  Google Scholar 

  35. Rana A, Musto AE. The role of inflammation in the development of epilepsy. J Neuroinflammation. 2018;15:144. https://doi.org/10.1186/s12974-018-1192-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Levite M. Autoimmune epilepsy. Nat Immunol. 2002;3:500. https://doi.org/10.1038/ni0602-500.

    Article  CAS  PubMed  Google Scholar 

  37. Bien CG, Urbach H, Schramm J, Soeder BM, Becker AJ, Voltz R, Vincent A, Elger CE. Limbic encephalitis as a precipitating event in adult-onset temporal lobe epilepsy. Neurology. 2007;69:1236–44. https://doi.org/10.1212/01.wnl.0000276946.08412.ef.

    Article  CAS  PubMed  Google Scholar 

  38. Michael BD, Solomon T. Seizures and encephalitis: clinical features, management, and potential pathophysiologic mechanisms. Epilepsia. 2012;53(Suppl 4):63–71. https://doi.org/10.1111/j.1528-1167.2012.03615.x.

    Article  PubMed  Google Scholar 

  39. Geis C, Planaguma J, Carreno M, Graus F, Dalmau J. Autoimmune seizures and epilepsy. J Clin Invest. 2019;129:926–40. https://doi.org/10.1172/JCI125178.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sakamoto M, Matsumoto R, Shimotake A, Togawa J, Takeyama H, Kobayashi K, Leypoldt F, Wandinger KP, Kondo T, Takahashi R, Ikeda A. Diagnostic value of an algorithm for autoimmune epilepsy in a retrospective cohort. Front Neurol. 2022. https://doi.org/10.3389/fneur.2022.902157.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, Seiffert E, Heinemann U, Friedman A. TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain. 2007;130:535–47. https://doi.org/10.1093/brain/awl317.

    Article  PubMed  Google Scholar 

  42. Zattoni M, Mura ML, Deprez F, Schwendener RA, Engelhardt B, Frei K, Fritschy JM. Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. J Neurosci. 2011;31:4037–50. https://doi.org/10.1523/JNEUROSCI.6210-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Janigro D. Are you in or out? Leukocyte, ion, and neurotransmitter permeability across the epileptic blood-brain barrier. Epilepsia. 2012;53(Suppl 1):26–34. https://doi.org/10.1111/j.1528-1167.2012.03472.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marchi N, Granata T, Janigro D. Inflammatory pathways of seizure disorders. Trends Neurosci. 2014;37:55–65. https://doi.org/10.1016/j.tins.2013.11.002.

    Article  CAS  PubMed  Google Scholar 

  45. Vezzani A, Balosso S, Ravizza T. The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun. 2008;22:797–803. https://doi.org/10.1016/j.bbi.2008.03.009.

    Article  CAS  PubMed  Google Scholar 

  46. Patel DC, Wilcox KS, Metcalf CS. Novel targets for developing antiseizure and potentially. Antiepileptogenic Drugs Epilepsy Curr. 2017;17:293–8. https://doi.org/10.5698/1535-7597.17.5.293.

    Article  PubMed  Google Scholar 

  47. Allan SM, Tyrrell PJ, Rothwell NJ. Interleukin-1 and neuronal injury. Nat Rev Immunol. 2005;5:629–40. https://doi.org/10.1038/nri1664.

    Article  CAS  PubMed  Google Scholar 

  48. Ravizza T, Vezzani A. Status epilepticus induces time-dependent neuronal and astrocytic expression of interleukin-1 receptor type I in the rat limbic system. Neuroscience. 2006;137:301–8. https://doi.org/10.1016/j.neuroscience.2005.07.063.

    Article  CAS  PubMed  Google Scholar 

  49. Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, Rossetti C, Molteni M, Casalgrandi M, Manfredi AA, Bianchi ME, Vezzani A. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med. 2010;16:413–9. https://doi.org/10.1038/nm.2127.

    Article  CAS  PubMed  Google Scholar 

  50. Bauer S, Cepok S, Todorova-Rudolph A, Nowak M, Koller M, Lorenz R, Oertel WH, Rosenow F, Hemmer B, Hamer HM. Etiology and site of temporal lobe epilepsy influence postictal cytokine release. Epilepsy Res. 2009;86:82–8. https://doi.org/10.1016/j.eplepsyres.2009.05.009.

    Article  CAS  PubMed  Google Scholar 

  51. Minami M, Kuraishi Y, Satoh M. Effects of kainic acid on messenger RNA levels of IL-1 beta, IL-6, TNF alpha and LIF in the rat brain. Biochem Biophys Res Commun. 1991;176:593–8. https://doi.org/10.1016/s0006-291x(05)80225-6.

    Article  CAS  PubMed  Google Scholar 

  52. Yabuuchi K, Minami M, Katsumata S, Satoh M. In situ hybridization study of interleukin-1 beta mRNA induced by kainic acid in the rat brain. Brain Res Mol Brain Res. 1993;20:153–61. https://doi.org/10.1016/0169-328x(93)90121-5.

    Article  CAS  PubMed  Google Scholar 

  53. Vezzani A, Conti M, De Luigi A, Ravizza T, Moneta D, Marchesi F, De Simoni MG. Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J Neurosci. 1999;19:5054–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vezzani A, Moneta D, Richichi C, Aliprandi M, Burrows SJ, Ravizza T, Perego C, De Simoni MG. Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia. 2002;43(Suppl 5):30–5. https://doi.org/10.1046/j.1528-1157.43.s.5.14.x.

    Article  CAS  PubMed  Google Scholar 

  55. Ravizza T, Lucas SM, Balosso S, Bernardino L, Ku G, Noe F, Malva J, Randle JC, Allan S, Vezzani A. Inactivation of caspase-1 in rodent brain: a novel anticonvulsive strategy. Epilepsia. 2006;47:1160–8. https://doi.org/10.1111/j.1528-1167.2006.00590.x.

    Article  CAS  PubMed  Google Scholar 

  56. Maroso M, Balosso S, Ravizza T, Iori V, Wright CI, French J, Vezzani A. Interleukin-1beta biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics. 2011;8:304–15. https://doi.org/10.1007/s13311-011-0039-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhu G, Okada M, Yoshida S, Mori F, Ueno S, Wakabayashi K, Kaneko S. Effects of interleukin-1beta on hippocampal glutamate and GABA releases associated with Ca2+-induced Ca2+ releasing systems. Epilepsy Res. 2006;71:107–16. https://doi.org/10.1016/j.eplepsyres.2006.05.017.

    Article  CAS  PubMed  Google Scholar 

  58. Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, Binaglia M, Corsini E, Di Luca M, Galli CL, Marinovich M. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci. 2003;23:8692–700. https://doi.org/10.1523/jneurosci.23-25-08692.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Postnikova TY, Zubareva OE, Kovalenko AA, Kim KK, Magazanik LG, Zaitsev AV. Status epilepticus impairs synaptic plasticity in rat hippocampus and is followed by changes in expression of NMDA receptors. Biochemistry (Mosc). 2017;82:282–90. https://doi.org/10.1134/S0006297917030063.

    Article  CAS  PubMed  Google Scholar 

  60. Wang S, Cheng Q, Malik S, Yang J. Interleukin-1beta inhibits gamma-aminobutyric acid type A (GABA(A)) receptor current in cultured hippocampal neurons. J Pharmacol Exp Ther. 2000;292:497–504.

    CAS  PubMed  Google Scholar 

  61. Hurst SM, Wilkinson TS, McLoughlin RM, Jones S, Horiuchi S, Yamamoto N, Rose-John S, Fuller GM, Topley N, Jones SA. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity. 2001;14:705–14. https://doi.org/10.1016/s1074-7613(01)00151-0.

    Article  CAS  PubMed  Google Scholar 

  62. Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther. 2006;8(Suppl 2):S3. https://doi.org/10.1186/ar1917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rose-John S, Waetzig GH, Scheller J, Grotzinger J, Seegert D. The IL-6/sIL-6R complex as a novel target for therapeutic approaches. Expert Opin Ther Targets. 2007;11:613–24. https://doi.org/10.1517/14728222.11.5.613.

    Article  CAS  PubMed  Google Scholar 

  64. Gruol DL. IL-6 regulation of synaptic function in the CNS. Neuropharmacology. 2015;96:42–54. https://doi.org/10.1016/j.neuropharm.2014.10.023.

    Article  CAS  PubMed  Google Scholar 

  65. Billiau AD, Witters P, Ceulemans B, Kasran A, Wouters C, Lagae L. Intravenous immunoglobulins in refractory childhood-onset epilepsy: effects on seizure frequency, EEG activity, and cerebrospinal fluid cytokine profile. Epilepsia. 2007;48:1739–49. https://doi.org/10.1111/j.1528-1167.2007.01134.x.

    Article  CAS  PubMed  Google Scholar 

  66. Hulkkonen J, Koskikallio E, Rainesalo S, Keranen T, Hurme M, Peltola J. The balance of inhibitory and excitatory cytokines is differently regulated in vivo and in vitro among therapy resistant epilepsy patients. Epilepsy Res. 2004;59:199–205. https://doi.org/10.1016/j.eplepsyres.2004.04.007.

    Article  CAS  PubMed  Google Scholar 

  67. Peltola J, Hurme M, Miettinen A, Keranen T. Elevated levels of interleukin-6 may occur in cerebrospinal fluid from patients with recent epileptic seizures. Epilepsy Res. 1998;31:129–33. https://doi.org/10.1016/s0920-1211(98)00024-2.

    Article  CAS  PubMed  Google Scholar 

  68. Nowak M, Bauer S, Haag A, Cepok S, Todorova-Rudolph A, Tackenberg B, Norwood B, Oertel WH, Rosenow F, Hemmer B, Hamer HM. Interictal alterations of cytokines and leukocytes in patients with active epilepsy. Brain Behav Immun. 2011;25:423–8. https://doi.org/10.1016/j.bbi.2010.10.022.

    Article  CAS  PubMed  Google Scholar 

  69. Peltola J, Palmio J, Korhonen L, Suhonen J, Miettinen A, Hurme M, Lindholm D, Keranen T. Interleukin-6 and interleukin-1 receptor antagonist in cerebrospinal fluid from patients with recent tonic-clonic seizures. Epilepsy Res. 2000;41:205–11. https://doi.org/10.1016/s0920-1211(00)00140-6.

    Article  CAS  PubMed  Google Scholar 

  70. Alapirtti T, Rinta S, Hulkkonen J, Makinen R, Keranen T, Peltola J. Interleukin-6, interleukin-1 receptor antagonist and interleukin-1beta production in patients with focal epilepsy: a video-EEG study. J Neurol Sci. 2009;280:94–7. https://doi.org/10.1016/j.jns.2009.02.355.

    Article  CAS  PubMed  Google Scholar 

  71. Alapirtti T, Lehtimaki K, Nieminen R, Makinen R, Raitanen J, Moilanen E, Makinen J, Peltola J. The production of IL-6 in acute epileptic seizure: A video-EEG study. J Neuroimmunol. 2018;316:50–5. https://doi.org/10.1016/j.jneuroim.2017.12.008.

    Article  CAS  PubMed  Google Scholar 

  72. de Bock F, Dornand J, Rondouin G. Release of TNF alpha in the rat hippocampus following epileptic seizures and excitotoxic neuronal damage. NeuroReport. 1996;7:1125–9. https://doi.org/10.1097/00001756-199604260-00004.

    Article  PubMed  Google Scholar 

  73. Lehtimaki KA, Peltola J, Koskikallio E, Keranen T, Honkaniemi J. Expression of cytokines and cytokine receptors in the rat brain after kainic acid-induced seizures. Brain Res Mol Brain Res. 2003;110:253–60. https://doi.org/10.1016/s0169-328x(02)00654-x.

    Article  CAS  PubMed  Google Scholar 

  74. De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, De Luigi A, Garattini S, Vezzani A. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci. 2000;12:2623–33. https://doi.org/10.1046/j.1460-9568.2000.00140.x.

    Article  PubMed  Google Scholar 

  75. Sallmann S, Juttler E, Prinz S, Petersen N, Knopf U, Weiser T, Schwaninger M. Induction of interleukin-6 by depolarization of neurons. J Neurosci. 2000;20:8637–42. https://doi.org/10.1523/jneurosci.20-23-08637.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Benson MJ, Manzanero S, Borges K. Complex alterations in microglial M1/M2 markers during the development of epilepsy in two mouse models. Epilepsia. 2015;56:895–905. https://doi.org/10.1111/epi.12960.

    Article  CAS  PubMed  Google Scholar 

  77. Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone MB, Mucke L. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci U S A. 1993;90:10061–5. https://doi.org/10.1073/pnas.90.21.10061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Samland H, Huitron-Resendiz S, Masliah E, Criado J, Henriksen SJ, Campbell IL. Profound increase in sensitivity to glutamatergic- but not cholinergic agonist-induced seizures in transgenic mice with astrocyte production of IL-6. J Neurosci Res. 2003;73:176–87. https://doi.org/10.1002/jnr.10635.

    Article  CAS  PubMed  Google Scholar 

  79. Kalueff AV, Lehtimaki KA, Ylinen A, Honkaniemi J, Peltola J. Intranasal administration of human IL-6 increases the severity of chemically induced seizures in rats. Neurosci Lett. 2004;365:106–10. https://doi.org/10.1016/j.neulet.2004.04.061.

    Article  CAS  PubMed  Google Scholar 

  80. De Sarro G, Russo E, Ferreri G, Giuseppe B, Flocco MA, Di Paola ED, De Sarro A. Seizure susceptibility to various convulsant stimuli of knockout interleukin-6 mice. Pharmacol Biochem Behav. 2004;77:761–6. https://doi.org/10.1016/j.pbb.2004.01.012.

    Article  CAS  PubMed  Google Scholar 

  81. Penkowa M, Molinero A, Carrasco J, Hidalgo J. Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures. Neuroscience. 2001;102:805–18. https://doi.org/10.1016/s0306-4522(00)00515-7.

    Article  CAS  PubMed  Google Scholar 

  82. Bottinger EP. TGF-beta in renal injury and disease. Semin Nephrol. 2007;27:309–20. https://doi.org/10.1016/j.semnephrol.2007.02.009.

    Article  CAS  PubMed  Google Scholar 

  83. Lan HY, Chung AC. TGF-beta/Smad signaling in kidney disease. Semin Nephrol. 2012;32:236–43. https://doi.org/10.1016/j.semnephrol.2012.04.002.

    Article  CAS  PubMed  Google Scholar 

  84. Wang W, Huang XR, Li AG, Liu F, Li JH, Truong LD, Wang XJ, Lan HY. Signaling mechanism of TGF-beta1 in prevention of renal inflammation: role of Smad7. J Am Soc Nephrol. 2005;16:1371–83. https://doi.org/10.1681/ASN.2004121070.

    Article  CAS  PubMed  Google Scholar 

  85. Battista D, Ferrari CC, Gage FH, Pitossi FJ. Neurogenic niche modulation by activated microglia: transforming growth factor beta increases neurogenesis in the adult dentate gyrus. Eur J Neurosci. 2006;23:83–93. https://doi.org/10.1111/j.1460-9568.2005.04539.x.

    Article  PubMed  Google Scholar 

  86. Lu Y, Xue T, Yuan J, Li Y, Wu Y, Xi Z, Xiao Z, Chen Y, Wang X. Increased expression of TGFbeta type I receptor in brain tissues of patients with temporal lobe epilepsy. Clin Sci (Lond). 2009;117:17–22. https://doi.org/10.1042/CS20080347.

    Article  CAS  PubMed  Google Scholar 

  87. Yu W, Zou Y, Du Y, Luo J, Zhang M, Yang W, Wang X, Lu Y. Altered cerebrospinal fluid concentrations of TGFbeta1 in patients with drug-resistant epilepsy. Neurochem Res. 2014;39:2211–7. https://doi.org/10.1007/s11064-014-1422-z.

    Article  CAS  PubMed  Google Scholar 

  88. Plata-Salaman CR, Ilyin SE, Turrin NP, Gayle D, Flynn MC, Romanovitch AE, Kelly ME, Bureau Y, Anisman H, McIntyre DC. Kindling modulates the IL-1beta system, TNF-alpha, TGF-beta1, and neuropeptide mRNAs in specific brain regions. Brain Res Mol Brain Res. 2000;75:248–58. https://doi.org/10.1016/s0169-328x(99)00306-x.

    Article  CAS  PubMed  Google Scholar 

  89. Aronica E, van Vliet EA, Mayboroda OA, Troost D, da Silva FH, Gorter JA. Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy. Eur J Neurosci. 2000;12:2333–44. https://doi.org/10.1046/j.1460-9568.2000.00131.x.

    Article  CAS  PubMed  Google Scholar 

  90. van Vliet EA, da Costa AS, Redeker S, van Schaik R, Aronica E, Gorter JA. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain. 2007;130:521–34. https://doi.org/10.1093/brain/awl318.

    Article  PubMed  Google Scholar 

  91. Salar S, Maslarova A, Lippmann K, Nichtweiss J, Weissberg I, Sheintuch L, Kunz WS, Shorer Z, Friedman A, Heinemann U. Blood-brain barrier dysfunction can contribute to pharmacoresistance of seizures. Epilepsia. 2014;55:1255–63. https://doi.org/10.1111/epi.12713.

    Article  CAS  PubMed  Google Scholar 

  92. Bar-Klein G, Cacheaux LP, Kamintsky L, Prager O, Weissberg I, Schoknecht K, Cheng P, Kim SY, Wood L, Heinemann U, Kaufer D, Friedman A. Losartan prevents acquired epilepsy via TGF-beta signaling suppression. Ann Neurol. 2014;75:864–75. https://doi.org/10.1002/ana.24147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cacheaux LP, Ivens S, David Y, Lakhter AJ, Bar-Klein G, Shapira M, Heinemann U, Friedman A, Kaufer D. Transcriptome profiling reveals TGF-beta signaling involvement in epileptogenesis. J Neurosci. 2009;29:8927–35. https://doi.org/10.1523/JNEUROSCI.0430-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Weissberg I, Wood L, Kamintsky L, Vazquez O, Milikovsky DZ, Alexander A, Oppenheim H, Ardizzone C, Becker A, Frigerio F, Vezzani A, Buckwalter MS, Huguenard JR, Friedman A, Kaufer D. Albumin induces excitatory synaptogenesis through astrocytic TGF-beta/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol Dis. 2015;78:115–25. https://doi.org/10.1016/j.nbd.2015.02.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Olmos G, Llado J. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm. 2014. https://doi.org/10.1155/2014/861231.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem. 2006;281:21362–8. https://doi.org/10.1074/jbc.M600504200.

    Article  CAS  PubMed  Google Scholar 

  97. Galic MA, Riazi K, Pittman QJ. Cytokines and brain excitability. Front Neuroendocrinol. 2012;33:116–25. https://doi.org/10.1016/j.yfrne.2011.12.002.

    Article  CAS  PubMed  Google Scholar 

  98. Stellwagen D, Beattie EC, Seo JY, Malenka RC. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci. 2005;25:3219–28. https://doi.org/10.1523/JNEUROSCI.4486-04.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Probert L, Akassoglou K, Pasparakis M, Kontogeorgos G, Kollias G. Spontaneous inflammatory demyelinating disease in transgenic mice showing central nervous system-specific expression of tumor necrosis factor alpha. Proc Natl Acad Sci U S A. 1995;92:11294–8. https://doi.org/10.1073/pnas.92.24.11294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Savin C, Triesch J, Meyer-Hermann M. Epileptogenesis due to glia-mediated synaptic scaling. J R Soc Interface. 2009;6:655–68. https://doi.org/10.1098/rsif.2008.0387.

    Article  CAS  PubMed  Google Scholar 

  101. Shandra AA, Godlevsky LS, Vastyanov RS, Oleinik AA, Konovalenko VL, Rapoport EN, Korobka NN. The role of TNF-alpha in amygdala kindled rats. Neurosci Res. 2002;42:147–53. https://doi.org/10.1016/s0168-0102(01)00309-1.

    Article  CAS  PubMed  Google Scholar 

  102. Godlevsky LS, Shandra AA, Oleinik AA, Vastyanov RS, Kostyushov VV, Timchishin OL. TNF-alpha in cerebral cortex and cerebellum is affected by amygdalar kindling but not by stimulation of cerebellum. Pol J Pharmacol. 2002;54:655–60.

    CAS  PubMed  Google Scholar 

  103. Yuhas Y, Weizman A, Ashkenazi S. Bidirectional concentration-dependent effects of tumor necrosis factor alpha in Shigella dysenteriae-related seizures. Infect Immun. 2003;71:2288–91. https://doi.org/10.1128/IAI.71.4.2288-2291.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Balosso S, Ravizza T, Perego C, Peschon J, Campbell IL, De Simoni MG, Vezzani A. Tumor necrosis factor-alpha inhibits seizures in mice via p75 receptors. Ann Neurol. 2005;57:804–12. https://doi.org/10.1002/ana.20480.

    Article  CAS  PubMed  Google Scholar 

  105. Shinoda S, Skradski SL, Araki T, Schindler CK, Meller R, Lan JQ, Taki W, Simon RP, Henshall DC. Formation of a tumour necrosis factor receptor 1 molecular scaffolding complex and activation of apoptosis signal-regulating kinase 1 during seizure-induced neuronal death. Eur J Neurosci. 2003;17:2065–76. https://doi.org/10.1046/j.1460-9568.2003.02655.x.

    Article  PubMed  Google Scholar 

  106. Grell M, Wajant H, Zimmermann G, Scheurich P. The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proc Natl Acad Sci U S A. 1998;95:570–5. https://doi.org/10.1073/pnas.95.2.570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–5. https://doi.org/10.1038/nature00858.

    Article  CAS  PubMed  Google Scholar 

  108. Muller S, Ronfani L, Bianchi ME. Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J Intern Med. 2004;255:332–43. https://doi.org/10.1111/j.1365-2796.2003.01296.x.

    Article  CAS  PubMed  Google Scholar 

  109. Walker L, Tse K, Ricci E, Thippeswamy T, Sills GJ, White SH, Antoine DJ, Marson A, Pirmohamed M. High mobility group box 1 in the inflammatory pathogenesis of epilepsy: profiling circulating levels after experimental and clinical seizures. The Lancet. 2014;383:S105.

    Article  Google Scholar 

  110. Kan M, Song L, Zhang X, Zhang J, Fang P. Circulating high mobility group box-1 and toll-like receptor 4 expressions increase the risk and severity of epilepsy. Braz J Med Biol Res. 2019. https://doi.org/10.1590/1414-431X20197374.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Han Y, Yang L, Liu X, Feng Y, Pang Z, Lin Y. HMGB1/CXCL12-Mediated immunity and Th17 cells might underlie highly suspected autoimmune epilepsy in elderly individuals. Neuropsychiatr Dis Treat. 2020;16:1285–93. https://doi.org/10.2147/NDT.S242766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhao J, Zheng Y, Liu K, Chen J, Lai N, Fei F, Shi J, Xu C, Wang S, Nishibori M, Wang Y, Chen Z. HMGB1 Is a therapeutic target and biomarker in diazepam-refractory status epilepticus with wide time window. Neurotherapeutics. 2020;17:710–21. https://doi.org/10.1007/s13311-019-00815-3.

    Article  CAS  PubMed  Google Scholar 

  113. Zhao J, Wang Y, Xu C, Liu K, Wang Y, Chen L, Wu X, Gao F, Guo Y, Zhu J, Wang S, Nishibori M, Chen Z. Therapeutic potential of an anti-high mobility group box-1 monoclonal antibody in epilepsy. Brain Behav Immun. 2017;64:308–19. https://doi.org/10.1016/j.bbi.2017.02.002.

    Article  CAS  PubMed  Google Scholar 

  114. Chiavegato A, Zurolo E, Losi G, Aronica E, Carmignoto G. The inflammatory molecules IL-1beta and HMGB1 can rapidly enhance focal seizure generation in a brain slice model of temporal lobe epilepsy. Front Cell Neurosci. 2014;8:155. https://doi.org/10.3389/fncel.2014.00155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Balosso S, Liu J, Bianchi ME, Vezzani A. Disulfide-containing high mobility group box-1 promotes N-methyl-D-aspartate receptor function and excitotoxicity by activating Toll-like receptor 4-dependent signaling in hippocampal neurons. Antioxid Redox Signal. 2014;21:1726–40. https://doi.org/10.1089/ars.2013.5349.

    Article  CAS  PubMed  Google Scholar 

  116. Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J. 2018;285:2944–71. https://doi.org/10.1111/febs.14466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wu Y, Wang X, Mo X, Xi Z, Xiao F, Li J, Zhu X, Luan G, Wang Y, Li Y, Zhang J. Expression of monocyte chemoattractant protein-1 in brain tissue of patients with intractable epilepsy. Clin Neuropathol. 2008;27:55–63. https://doi.org/10.5414/npp27055.

    Article  CAS  PubMed  Google Scholar 

  118. Choi J, Nordli DR Jr, Alden TD, DiPatri A Jr, Laux L, Kelley K, Rosenow J, Schuele SU, Rajaram V, Koh S. Cellular injury and neuroinflammation in children with chronic intractable epilepsy. J Neuroinflammation. 2009;6:38. https://doi.org/10.1186/1742-2094-6-38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. van Gassen KL, de Wit M, Koerkamp MJ, Rensen MG, van Rijen PC, Holstege FC, Lindhout D, de Graan PN. Possible role of the innate immunity in temporal lobe epilepsy. Epilepsia. 2008;49:1055–65. https://doi.org/10.1111/j.1528-1167.2007.01470.x.

    Article  CAS  PubMed  Google Scholar 

  120. Tian DS, Peng J, Murugan M, Feng LJ, Liu JL, Eyo UB, Zhou LJ, Mogilevsky R, Wang W, Wu LJ. Chemokine CCL2-CCR2 signaling induces neuronal cell death via STAT3 activation and IL-1beta production after status Epilepticus. J Neurosci. 2017;37:7878–92. https://doi.org/10.1523/JNEUROSCI.0315-17.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Foresti ML, Arisi GM, Katki K, Montanez A, Sanchez RM, Shapiro LA. Chemokine CCL2 and its receptor CCR2 are increased in the hippocampus following pilocarpine-induced status epilepticus. J Neuroinflammation. 2009;6:40. https://doi.org/10.1186/1742-2094-6-40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xu JH, Long L, Tang YC, Zhang JT, Hut HT, Tang FR. CCR3, CCR2A and macrophage inflammatory protein (MIP)-1a, monocyte chemotactic protein-1 (MCP-1) in the mouse hippocampus during and after pilocarpine-induced status epilepticus (PISE). Neuropathol Appl Neurobiol. 2009;35:496–514. https://doi.org/10.1111/j.1365-2990.2009.01022.x.

    Article  CAS  PubMed  Google Scholar 

  123. Varvel NH, Neher JJ, Bosch A, Wang W, Ransohoff RM, Miller RJ, Dingledine R. Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proc Natl Acad Sci U S A. 2016;113:E5665–74. https://doi.org/10.1073/pnas.1604263113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cerri C, Genovesi S, Allegra M, Pistillo F, Puntener U, Guglielmotti A, Perry VH, Bozzi Y, Caleo M. The Chemokine CCL2 mediates the seizure-enhancing effects of systemic inflammation. J Neurosci. 2016;36:3777–88. https://doi.org/10.1523/JNEUROSCI.0451-15.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mennicken F, Chabot JG, Quirion R. Systemic administration of kainic acid in adult rat stimulates expression of the chemokine receptor CCR5 in the forebrain. Glia. 2002;37:124–38. https://doi.org/10.1002/glia.10021.

    Article  PubMed  Google Scholar 

  126. Chen Z, Yu S, Bakhiet M, Winblad B, Zhu J. The chemokine receptor CCR5 is not a necessary inflammatory mediator in kainic acid-induced hippocampal injury: evidence for a compensatory effect by increased CCR2 and CCR3. J Neurochem. 2003;86:61–8. https://doi.org/10.1046/j.1471-4159.2003.01807.x.

    Article  CAS  PubMed  Google Scholar 

  127. Louboutin JP, Chekmasova A, Marusich E, Agrawal L, Strayer DS. Role of CCR5 and its ligands in the control of vascular inflammation and leukocyte recruitment required for acute excitotoxic seizure induction and neural damage. FASEB J. 2011;25:737–53. https://doi.org/10.1096/fj.10-161851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Xu Y, Zeng K, Han Y, Wang L, Chen D, Xi Z, Wang H, Wang X, Chen G. Altered expression of CX3CL1 in patients with epilepsy and in a rat model. Am J Pathol. 2012;180:1950–62. https://doi.org/10.1016/j.ajpath.2012.01.024.

    Article  CAS  PubMed  Google Scholar 

  129. Yeo SI, Kim JE, Ryu HJ, Seo CH, Lee BC, Choi IG, Kim DS, Kang TC. The roles of fractalkine/CX3CR1 system in neuronal death following pilocarpine-induced status epilepticus. J Neuroimmunol. 2011;234:93–102. https://doi.org/10.1016/j.jneuroim.2011.03.005.

    Article  CAS  PubMed  Google Scholar 

  130. Roseti C, Fucile S, Lauro C, Martinello K, Bertollini C, Esposito V, Mascia A, Catalano M, Aronica E, Limatola C, Palma E. Fractalkine/CX3CL1 modulates GABAA currents in human temporal lobe epilepsy. Epilepsia. 2013;54:1834–44. https://doi.org/10.1111/epi.12354.

    Article  CAS  PubMed  Google Scholar 

  131. Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998;38:97–120. https://doi.org/10.1146/annurev.pharmtox.38.1.97.

    Article  CAS  PubMed  Google Scholar 

  132. Mancini A, Jovanovic DV, He QW, Di Battista JA. Site-specific proteolysis of cyclooxygenase-2: a putative step in inflammatory prostaglandin E(2) biosynthesis. J Cell Biochem. 2007;101:425–41. https://doi.org/10.1002/jcb.21191.

    Article  CAS  PubMed  Google Scholar 

  133. Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D. Cyclooxygenase pathways. Acta Biochim Pol. 2014;61:639–49.

    Article  PubMed  Google Scholar 

  134. Faour WH, Alaaeddine N, Mancini A, He QW, Jovanovic D, Di Battista JA. Early growth response factor-1 mediates prostaglandin E2-dependent transcriptional suppression of cytokine-induced tumor necrosis factor-alpha gene expression in human macrophages and rheumatoid arthritis-affected synovial fibroblasts. J Biol Chem. 2005;280:9536–46. https://doi.org/10.1074/jbc.M414067200.

    Article  CAS  PubMed  Google Scholar 

  135. Mancini AD, Di Battista JA. The cardinal role of the phospholipase A(2)/cyclooxygenase-2/prostaglandin E synthase/prostaglandin E(2) (PCPP) axis in inflammostasis. Inflamm Res. 2011;60:1083–92. https://doi.org/10.1007/s00011-011-0385-7.

    Article  CAS  PubMed  Google Scholar 

  136. Hartings JA, York J, Carroll CP, Hinzman JM, Mahoney E, Krueger B, Winkler MKL, Major S, Horst V, Jahnke P, Woitzik J, Kola V, Du Y, Hagen M, Jiang J, Dreier JP. Subarachnoid blood acutely induces spreading depolarizations and early cortical infarction. Brain. 2017;140:2673–90. https://doi.org/10.1093/brain/awx214.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Kang X, Qiu J, Li Q, Bell KA, Du Y, Jung DW, Lee JY, Hao J, Jiang J. Cyclooxygenase-2 contributes to oxidopamine-mediated neuronal inflammation and injury via the prostaglandin E2 receptor EP2 subtype. Sci Rep. 2017;7:9459. https://doi.org/10.1038/s41598-017-09528-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Qiu J, Shi Z, Jiang J. Cyclooxygenase-2 in glioblastoma multiforme. Drug Discov Today. 2017;22:148–56. https://doi.org/10.1016/j.drudis.2016.09.017.

    Article  CAS  PubMed  Google Scholar 

  139. Qiu J, Li Q, Bell KA, Yao X, Du Y, Zhang E, Yu JJ, Yu Y, Shi Z, Jiang J. Small-molecule inhibition of prostaglandin E receptor 2 impairs cyclooxygenase-associated malignant glioma growth. Br J Pharmacol. 2019;176:1680–99. https://doi.org/10.1111/bph.14622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yu Y, Nguyen DT, Jiang J. G protein-coupled receptors in acquired epilepsy: Druggability and translatability. Prog Neurobiol. 2019. https://doi.org/10.1016/j.pneurobio.2019.101682.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Hou R, Yu Y, Sluter MN, Li L, Hao J, Fang J, Yang J, Jiang J. Targeting EP2 receptor with multifaceted mechanisms for high-risk neuroblastoma. Cell Rep. 2022. https://doi.org/10.1016/j.celrep.2022.111000.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Hou R, Yu Y, Jiang J. Prostaglandin E2 in neuroblastoma: Targeting synthesis or signaling? Biomedicine Pharmacotherapy. 2022. https://doi.org/10.1016/j.biopha.2022.113966.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Desjardins P, Sauvageau A, Bouthillier A, Navarro D, Hazell AS, Rose C, Butterworth RF. Induction of astrocytic cyclooxygenase-2 in epileptic patients with hippocampal sclerosis. Neurochem Int. 2003;42:299–303. https://doi.org/10.1016/s0197-0186(02)00101-8.

    Article  CAS  PubMed  Google Scholar 

  144. Takemiya T, Suzuki K, Sugiura H, Yasuda S, Yamagata K, Kawakami Y, Maru E. Inducible brain COX-2 facilitates the recurrence of hippocampal seizures in mouse rapid kindling. Prostaglandins Other Lipid Mediat. 2003;71:205–16. https://doi.org/10.1016/s1098-8823(03)00040-6.

    Article  CAS  PubMed  Google Scholar 

  145. Tu B, Bazan NG. Hippocampal kindling epileptogenesis upregulates neuronal cyclooxygenase-2 expression in neocortex. Exp Neurol. 2003;179:167–75. https://doi.org/10.1016/s0014-4886(02)00019-5.

    Article  CAS  PubMed  Google Scholar 

  146. Du Y, Kemper T, Qiu J, Jiang J. Defining the therapeutic time window for suppressing the inflammatory prostaglandin E2 signaling after status epilepticus. Expert Rev Neurother. 2016;16:123–30. https://doi.org/10.1586/14737175.2016.1134322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Dhir A. An update of cyclooxygenase (COX)-inhibitors in epilepsy disorders. Expert Opin Investig Drugs. 2019;28:191–205. https://doi.org/10.1080/13543784.2019.1557147.

    Article  CAS  PubMed  Google Scholar 

  148. Oliveira MS, Furian AF, Royes LF, Fighera MR, Fiorenza NG, Castelli M, Machado P, Bohrer D, Veiga M, Ferreira J, Cavalheiro EA, Mello CF. Cyclooxygenase-2/PGE2 pathway facilitates pentylenetetrazol-induced seizures. Epilepsy Res. 2008;79:14–21. https://doi.org/10.1016/j.eplepsyres.2007.12.008.

    Article  CAS  PubMed  Google Scholar 

  149. Akula KK, Dhir A, Kulkarni SK. Rofecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor increases pentylenetetrazol seizure threshold in mice: possible involvement of adenosinergic mechanism. Epilepsy Res. 2008;78:60–70. https://doi.org/10.1016/j.eplepsyres.2007.10.008.

    Article  CAS  PubMed  Google Scholar 

  150. Claycomb RJ, Hewett SJ, Hewett JA. Prophylactic, prandial rofecoxib treatment lacks efficacy against acute PTZ-induced seizure generation and kindling acquisition. Epilepsia. 2011;52:273–83. https://doi.org/10.1111/j.1528-1167.2010.02889.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kunz T, Oliw EH. Nimesulide aggravates kainic acid-induced seizures in the rat. Pharmacol Toxicol. 2001;88:271–6. https://doi.org/10.1034/j.1600-0773.2001.d01-116.x.

    Article  CAS  PubMed  Google Scholar 

  152. Kunz T, Oliw EH. The selective cyclooxygenase-2 inhibitor rofecoxib reduces kainate-induced cell death in the rat hippocampus. Eur J Neurosci. 2001;13:569–75. https://doi.org/10.1046/j.1460-9568.2001.01420.x.

    Article  CAS  PubMed  Google Scholar 

  153. Polascheck N, Bankstahl M, Loscher W. The COX-2 inhibitor parecoxib is neuroprotective but not antiepileptogenic in the pilocarpine model of temporal lobe epilepsy. Exp Neurol. 2010;224:219–33. https://doi.org/10.1016/j.expneurol.2010.03.014.

    Article  CAS  PubMed  Google Scholar 

  154. Holtman L, van Vliet EA, van Schaik R, Queiroz CM, Aronica E, Gorter JA. Effects of SC58236, a selective COX-2 inhibitor, on epileptogenesis and spontaneous seizures in a rat model for temporal lobe epilepsy. Epilepsy Res. 2009;84:56–66. https://doi.org/10.1016/j.eplepsyres.2008.12.006.

    Article  CAS  PubMed  Google Scholar 

  155. Holtman L, van Vliet EA, Edelbroek PM, Aronica E, Gorter JA. Cox-2 inhibition can lead to adverse effects in a rat model for temporal lobe epilepsy. Epilepsy Res. 2010;91:49–56. https://doi.org/10.1016/j.eplepsyres.2010.06.011.

    Article  CAS  PubMed  Google Scholar 

  156. Andreasson K. Emerging roles of PGE2 receptors in models of neurological disease. Prostaglandins Other Lipid Mediat. 2010;91:104–12. https://doi.org/10.1016/j.prostaglandins.2009.04.003.

    Article  CAS  PubMed  Google Scholar 

  157. Grosser T, Yu Y, Fitzgerald GA. Emotion recollected in tranquility: lessons learned from the COX-2 saga. Annu Rev Med. 2010;61:17–33. https://doi.org/10.1146/annurev-med-011209-153129.

    Article  CAS  PubMed  Google Scholar 

  158. Ikeda-Matsuo Y. The Role of mPGES-1 in Inflammatory Brain Diseases. Biol Pharm Bull. 2017;40:557–63. https://doi.org/10.1248/bpb.b16-01026.

    Article  CAS  PubMed  Google Scholar 

  159. Ikeda-Matsuo Y, Ota A, Fukada T, Uematsu S, Akira S, Sasaki Y. Microsomal prostaglandin E synthase-1 is a critical factor of stroke-reperfusion injury. Proc Natl Acad Sci U S A. 2006;103:11790–5. https://doi.org/10.1073/pnas.0604400103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. O’Banion MK. Prostaglandin E2 synthases in neurologic homeostasis and disease. Prostaglandins Other Lipid Mediat. 2010;91:113–7. https://doi.org/10.1016/j.prostaglandins.2009.04.008.

    Article  CAS  PubMed  Google Scholar 

  161. Li L, Yasmen N, Hou R, Yang S, Lee JY, Hao J, Yu Y, Jiang J. inducible prostaglandin E synthase as a pharmacological target for ischemic stroke. Neurotherapeutics. 2022;19:366–85. https://doi.org/10.1007/s13311-022-01191-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Uematsu S, Matsumoto M, Takeda K, Akira S. Lipopolysaccharide-dependent prostaglandin E(2) production is regulated by the glutathione-dependent prostaglandin E(2) synthase gene induced by the toll-like receptor 4/MyD88/NF-IL6 pathway. J Immunol. 2002;168:5811–6. https://doi.org/10.4049/jimmunol.168.11.5811.

    Article  CAS  PubMed  Google Scholar 

  163. Matsumoto M, Tanaka T, Kaisho T, Sanjo H, Copeland NG, Gilbert DJ, Jenkins NA, Akira S. A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages. J Immunol. 1999;163:5039–48.

    Article  CAS  PubMed  Google Scholar 

  164. Takemiya T, Maehara M, Matsumura K, Yasuda S, Sugiura H, Yamagata K. Prostaglandin E2 produced by late induced COX-2 stimulates hippocampal neuron loss after seizure in the CA3 region. Neurosci Res. 2006;56:103–10. https://doi.org/10.1016/j.neures.2006.06.003.

    Article  CAS  PubMed  Google Scholar 

  165. Jiang J, Yang MS, Quan Y, Gueorguieva P, Ganesh T, Dingledine R. Therapeutic window for cyclooxygenase-2 related anti-inflammatory therapy after status epilepticus. Neurobiol Dis. 2015;76:126–36. https://doi.org/10.1016/j.nbd.2014.12.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Yu Y, Jiang J. COX-2/PGE2 axis regulates hippocampal BDNF/TrkB signaling via EP2 receptor after prolonged seizures. Epilepsia Open. 2020;5:418–31. https://doi.org/10.1002/epi4.12409.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Takemiya T, Matsumura K, Sugiura H, Maehara M, Yasuda S, Uematsu S, Akira S, Yamagata K. Endothelial microsomal prostaglandin E synthase-1 exacerbates neuronal loss induced by kainate. J Neurosci Res. 2010;88:381–90. https://doi.org/10.1002/jnr.22195.

    Article  CAS  PubMed  Google Scholar 

  168. Yasmen N, Sluter MN, Li L, Yu Y, Jiang J. Transient inhibition of microsomal prostaglandin E synthase-1 after status epilepticus blunts brain inflammation and is neuroprotective. Mol Brain. 2023. https://doi.org/10.1186/s13041-023-01008-y.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Shimada T, Takemiya T, Sugiura H, Yamagata K. Role of inflammatory mediators in the pathogenesis of epilepsy. Mediators Inflamm. 2014. https://doi.org/10.1155/2014/901902.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Takemiya T, Matsumura K, Sugiura H, Yasuda S, Uematsu S, Akira S, Yamagata K. Endothelial microsomal prostaglandin E synthase-1 facilitates neurotoxicity by elevating astrocytic Ca2+ levels. Neurochem Int. 2011;58:489–96. https://doi.org/10.1016/j.neuint.2011.01.003.

    Article  CAS  PubMed  Google Scholar 

  171. Bauer B, Hartz AM, Pekcec A, Toellner K, Miller DS, Potschka H. Seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier through glutamate and cyclooxygenase-2 signaling. Mol Pharmacol. 2008;73:1444–53. https://doi.org/10.1124/mol.107.041210.

    Article  CAS  PubMed  Google Scholar 

  172. Feldmann M, Asselin MC, Liu J, Wang S, McMahon A, Anton-Rodriguez J, Walker M, Symms M, Brown G, Hinz R, Matthews J, Bauer M, Langer O, Thom M, Jones T, Vollmar C, Duncan JS, Sisodiya SM, Koepp MJ. P-glycoprotein expression and function in patients with temporal lobe epilepsy: a case-control study. Lancet Neurol. 2013;12:777–85. https://doi.org/10.1016/S1474-4422(13)70109-1.

    Article  CAS  PubMed  Google Scholar 

  173. Zibell G, Unkruer B, Pekcec A, Hartz AM, Bauer B, Miller DS, Potschka H. Prevention of seizure-induced up-regulation of endothelial P-glycoprotein by COX-2 inhibition. Neuropharmacology. 2009;56:849–55. https://doi.org/10.1016/j.neuropharm.2009.01.009.

    Article  CAS  PubMed  Google Scholar 

  174. Schlichtiger J, Pekcec A, Bartmann H, Winter P, Fuest C, Soerensen J, Potschka H. Celecoxib treatment restores pharmacosensitivity in a rat model of pharmacoresistant epilepsy. Br J Pharmacol. 2010;160:1062–71. https://doi.org/10.1111/j.1476-5381.2010.00765.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Soldner ELB, Hartz AMS, Akanuma SI, Pekcec A, Doods H, Kryscio RJ, Hosoya KI, Bauer B. Inhibition of human microsomal PGE2 synthase-1 reduces seizure-induced increases of P-glycoprotein expression and activity at the blood-brain barrier. FASEB J. 2019;33:13966–81. https://doi.org/10.1096/fj.201901460RR.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Ahmad AS, Saleem S, Ahmad M, Dore S. Prostaglandin EP1 receptor contributes to excitotoxicity and focal ischemic brain damage. Toxicol Sci. 2006;89:265–70. https://doi.org/10.1093/toxsci/kfj022.

    Article  CAS  PubMed  Google Scholar 

  177. Kawano T, Anrather J, Zhou P, Park L, Wang G, Frys KA, Kunz A, Cho S, Orio M, Iadecola C. Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med. 2006;12:225–9. https://doi.org/10.1038/nm1362.

    Article  CAS  PubMed  Google Scholar 

  178. Li L, Sluter MN, Yu Y, Jiang J. Prostaglandin E receptors as targets for ischemic stroke: Novel evidence and molecular mechanisms of efficacy. Pharmacol Res. 2021. https://doi.org/10.1016/j.phrs.2020.105238.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Oliveira MS, Furian AF, Rambo LM, Ribeiro LR, Royes LF, Ferreira J, Calixto JB, Mello CF. Modulation of pentylenetetrazol-induced seizures by prostaglandin E2 receptors. Neuroscience. 2008;152:1110–8. https://doi.org/10.1016/j.neuroscience.2008.01.005.

    Article  CAS  PubMed  Google Scholar 

  180. Oliveira MS, Furian AF, Rambo LM, Ribeiro LR, Royes LF, Ferreira J, Calixto JB, Otalora LF, Garrido-Sanabria ER, Mello CF. Prostaglandin E2 modulates Na+, K+-ATPase activity in rat hippocampus: implications for neurological diseases. J Neurochem. 2009;109:416–26. https://doi.org/10.1111/j.1471-4159.2009.05961.x.

    Article  CAS  PubMed  Google Scholar 

  181. Reschke CR, Poersch AB, Masson CJ, Jesse AC, Marafiga JR, Lenz QF, Oliveira MS, Henshall DC, Mello CF. Systemic delivery of selective EP1 and EP3 receptor antagonists attenuates pentylenetetrazole-induced seizures in mice. Int J Physiol Pathophysiol Pharmacol. 2018;10:47–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Collins SA, Huff C, Chiaia N, Gudelsky GA, Yamamoto BK. 3,4-methylenedioxymethamphetamine increases excitability in the dentate gyrus: role of 5HT2A receptor-induced PGE2 signaling. J Neurochem. 2016;136:1074–84. https://doi.org/10.1111/jnc.13493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Fischborn SV, Soerensen J, Potschka H. Targeting the prostaglandin E2 EP1 receptor and cyclooxygenase-2 in the amygdala kindling model in mice. Epilepsy Res. 2010;91:57–65. https://doi.org/10.1016/j.eplepsyres.2010.06.012.

    Article  CAS  PubMed  Google Scholar 

  184. Rojas A, Gueorguieva P, Lelutiu N, Quan Y, Shaw R, Dingledine R. The prostaglandin EP1 receptor potentiates kainate receptor activation via a protein kinase C pathway and exacerbates status epilepticus. Neurobiol Dis. 2014;70:74–89. https://doi.org/10.1016/j.nbd.2014.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Pekcec A, Unkruer B, Schlichtiger J, Soerensen J, Hartz AM, Bauer B, van Vliet EA, Gorter JA, Potschka H. Targeting prostaglandin E2 EP1 receptors prevents seizure-associated P-glycoprotein up-regulation. J Pharmacol Exp Ther. 2009;330:939–47. https://doi.org/10.1124/jpet.109.152520.

    Article  CAS  PubMed  Google Scholar 

  186. Jiang J, Dingledine R. Prostaglandin receptor EP2 in the crosshairs of anti-inflammation, anti-cancer, and neuroprotection. Trends Pharmacol Sci. 2013;34:413–23. https://doi.org/10.1016/j.tips.2013.05.003.

    Article  CAS  PubMed  Google Scholar 

  187. Paralkar VM, Borovecki F, Ke HZ, Cameron KO, Lefker B, Grasser WA, Owen TA, Li M, DaSilva-Jardine P, Zhou M, Dunn RL, Dumont F, Korsmeyer R, Krasney P, Brown TA, Plowchalk D, Vukicevic S, Thompson DD. An EP2 receptor-selective prostaglandin E2 agonist induces bone healing. Proc Natl Acad Sci U S A. 2003;100:6736–40. https://doi.org/10.1073/pnas.1037343100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. McCullough L, Wu L, Haughey N, Liang X, Hand T, Wang Q, Breyer RM, Andreasson K. Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J Neurosci. 2004;24:257–68. https://doi.org/10.1523/JNEUROSCI.4485-03.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Elberg G, Elberg D, Lewis TV, Guruswamy S, Chen L, Logan CJ, Chan MD, Turman MA. EP2 receptor mediates PGE2-induced cystogenesis of human renal epithelial cells. Am J Physiol Renal Physiol. 2007;293:F1622–32. https://doi.org/10.1152/ajprenal.00036.2007.

    Article  CAS  PubMed  Google Scholar 

  190. Jiang J, Ganesh T, Du Y, Thepchatri P, Rojas A, Lewis I, Kurtkaya S, Li L, Qui M, Serrano G, Shaw R, Sun A, Dingledine R. Neuroprotection by selective allosteric potentiators of the EP2 prostaglandin receptor. Proc Natl Acad Sci U S A. 2010;107:2307–12. https://doi.org/10.1073/pnas.0909310107.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Jiang J, Van TM, Ganesh T, Dingledine R. Discovery of 2-piperidinyl phenyl benzamides and trisubstituted pyrimidines as positive allosteric modulators of the prostaglandin receptor EP2. ACS Chem Neurosci. 2018;9:699–707. https://doi.org/10.1021/acschemneuro.7b00486.

    Article  CAS  PubMed  Google Scholar 

  192. Liu Q, Liang X, Wang Q, Wilson EN, Lam R, Wang J, Kong W, Tsai C, Pan T, Larkin PB, Shamloo M, Andreasson KI. PGE2 signaling via the neuronal EP2 receptor increases injury in a model of cerebral ischemia. Proc Natl Acad Sci U S A. 2019;116:10019–24. https://doi.org/10.1073/pnas.1818544116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Hou R, Yu Y, Jiang J. PGE2 receptors in detrusor muscle: drugging the undruggable for urgency. Biochem Pharmacol. 2021. https://doi.org/10.1016/j.bcp.2020.114363.

    Article  PubMed  Google Scholar 

  194. Quan Y, Jiang J, Dingledine R. EP2 receptor signaling pathways regulate classical activation of microglia. J Biol Chem. 2013;288:9293–302. https://doi.org/10.1074/jbc.M113.455816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Fu Y, Yang MS, Jiang J, Ganesh T, Joe E, Dingledine R. EP2 receptor signaling regulates microglia death. Mol Pharmacol. 2015;88:161–70. https://doi.org/10.1124/mol.115.098202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sluter MN, Hou R, Li L, Yasmen N, Yu Y, Liu J, Jiang J. EP2 antagonists (2011–2021): a decade’s journey from discovery to therapeutics. J Med Chem. 2021;64:11816–36. https://doi.org/10.1021/acs.jmedchem.1c00816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Jiang J, Ganesh T, Du Y, Quan Y, Serrano G, Qui M, Speigel I, Rojas A, Lelutiu N, Dingledine R. Small molecule antagonist reveals seizure-induced mediation of neuronal injury by prostaglandin E2 receptor subtype EP2. Proc Natl Acad Sci U S A. 2012;109:3149–54. https://doi.org/10.1073/pnas.1120195109.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Jiang J, Quan Y, Ganesh T, Pouliot WA, Dudek FE, Dingledine R. Inhibition of the prostaglandin receptor EP2 following status epilepticus reduces delayed mortality and brain inflammation. Proc Natl Acad Sci U S A. 2013;110:3591–6. https://doi.org/10.1073/pnas.1218498110.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Rojas A, Ganesh T, Lelutiu N, Gueorguieva P, Dingledine R. Inhibition of the prostaglandin EP2 receptor is neuroprotective and accelerates functional recovery in a rat model of organophosphorus induced status epilepticus. Neuropharmacology. 2015;93:15–27. https://doi.org/10.1016/j.neuropharm.2015.01.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Rojas A, Ganesh T, Manji Z, O’Neill T, Dingledine R. Inhibition of the prostaglandin E2 receptor EP2 prevents status epilepticus-induced deficits in the novel object recognition task in rats. Neuropharmacology. 2016;110:419–30. https://doi.org/10.1016/j.neuropharm.2016.07.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Rojas A, Ganesh T, Wang W, Wang J, Dingledine R. A rat model of organophosphate-induced status epilepticus and the beneficial effects of EP2 receptor inhibition. Neurobiol Dis. 2020. https://doi.org/10.1016/j.nbd.2019.02.010.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Jiang J, Yu Y, Kinjo ER, Du Y, Nguyen HP, Dingledine R. Suppressing pro-inflammatory prostaglandin signaling attenuates excitotoxicity-associated neuronal inflammation and injury. Neuropharmacology. 2019;149:149–60. https://doi.org/10.1016/j.neuropharm.2019.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Varvel NH, Espinosa-Garcia C, Hunter-Chang S, Chen D, Biegel A, Hsieh A, Blackmer-Raynolds L, Ganesh T, Dingledine R. peripheral myeloid cell EP2 activation contributes to the deleterious consequences of status epilepticus. J Neurosci. 2021;41:1105–17. https://doi.org/10.1523/JNEUROSCI.2040-20.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Marchi N. Experimental status epilepticus, COX-2 and BDNF: Connecting the dots. Epilepsia Open. 2021;6:466–7. https://doi.org/10.1002/epi4.12501.

    Article  PubMed Central  Google Scholar 

  205. Gu B, Huang YZ, He XP, Joshi RB, Jang W, McNamara JO. A Peptide uncoupling BDNF receptor TrkB from phospholipase Cgamma1 prevents epilepsy induced by status epilepticus. Neuron. 2015;88:484–91. https://doi.org/10.1016/j.neuron.2015.09.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Lin TW, Harward SC, Huang YZ, McNamara JO. Targeting BDNF/TrkB pathways for preventing or suppressing epilepsy. Neuropharmacology. 2020. https://doi.org/10.1016/j.neuropharm.2019.107734.

    Article  PubMed  Google Scholar 

  207. Amaradhi R, Mohammed S, Banik A, Franklin R, Dingledine R, Ganesh T. Second-generation prostaglandin receptor EP2 antagonist, TG8-260, with high potency, selectivity, oral bioavailability, and anti-inflammatory properties. ACS Pharmacol Transl Sci. 2022;5:118–33. https://doi.org/10.1021/acsptsci.1c00255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Rojas A, Amaradhi R, Banik A, Jiang C, Abreu-Melon J, Wang S, Dingledine R, Ganesh T. A novel second-generation EP2 receptor antagonist reduces neuroinflammation and gliosis after status epilepticus in rats. Neurotherapeutics. 2021;18:1207–25. https://doi.org/10.1007/s13311-020-00969-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Rawat V, Eastman CL, Amaradhi R, Banik A, Fender JS, Dingledine RJ, D’Ambrosio R, Ganesh T. Temporal expression of neuroinflammatory and oxidative stress markers and prostaglandin E2 receptor EP2 antagonist effect in a rat model of epileptogenesis. ACS Pharmacol Transl Sci. 2023;6:128–38. https://doi.org/10.1021/acsptsci.2c00189.

    Article  CAS  PubMed  Google Scholar 

  210. Varvel NH, Amaradhi R, Espinosa-Garcia C, Duddy S, Franklin R, Banik A, Aleman-Ruiz C, Blackmar-Raynolds L, Wang W, Honore T, Ganesh T, Dingledine R. Preclinical development of an EP2 antagonist for post-seizure cognitive deficits. Neuropharmacology. 2023. https://doi.org/10.1016/j.neuropharm.2022.109356.

    Article  PubMed  Google Scholar 

  211. Nagib MM, Yu Y, Jiang J. Targeting prostaglandin receptor EP2 for adjunctive treatment of status epilepticus. Pharmacol Ther. 2020. https://doi.org/10.1016/j.pharmthera.2020.107504.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Hizaki H, Segi E, Sugimoto Y, Hirose M, Saji T, Ushikubi F, Matsuoka T, Noda Y, Tanaka T, Yoshida N, Narumiya S, Ichikawa A. Abortive expansion of the cumulus and impaired fertility in mice lacking the prostaglandin E receptor subtype EP(2). Proc Natl Acad Sci U S A. 1999;96:10501–6. https://doi.org/10.1073/pnas.96.18.10501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kennedy CR, Zhang Y, Brandon S, Guan Y, Coffee K, Funk CD, Magnuson MA, Oates JA, Breyer MD, Breyer RM. Salt-sensitive hypertension and reduced fertility in mice lacking the prostaglandin EP2 receptor. Nat Med. 1999;5:217–20. https://doi.org/10.1038/5583.

    Article  CAS  PubMed  Google Scholar 

  214. Tilley SL, Audoly LP, Hicks EH, Kim HS, Flannery PJ, Coffman TM, Koller BH. Reproductive failure and reduced blood pressure in mice lacking the EP2 prostaglandin E2 receptor. J Clin Invest. 1999;103:1539–45. https://doi.org/10.1172/JCI6579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Savonenko A, Munoz P, Melnikova T, Wang Q, Liang X, Breyer RM, Montine TJ, Kirkwood A, Andreasson K. Impaired cognition, sensorimotor gating, and hippocampal long-term depression in mice lacking the prostaglandin E2 EP2 receptor. Exp Neurol. 2009;217:63–73. https://doi.org/10.1016/j.expneurol.2009.01.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Yang H, Zhang J, Breyer RM, Chen C. Altered hippocampal long-term synaptic plasticity in mice deficient in the PGE2 EP2 receptor. J Neurochem. 2009;108:295–304. https://doi.org/10.1111/j.1471-4159.2008.05766.x.

    Article  CAS  PubMed  Google Scholar 

  217. Rawat V, Banik A, Amaradhi R, Rojas A, Taval S, Nagy T, Dingledine R, Ganesh T. Pharmacological antagonism of EP2 receptor does not modify basal cardiovascular and respiratory function, blood cell counts, and bone morphology in animal models. Biomed Pharmacother. 2022. https://doi.org/10.1016/j.biopha.2022.112646.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Fabisiak T, Patel M. Crosstalk between neuroinflammation and oxidative stress in epilepsy. Front Cell Dev Biol. 2022. https://doi.org/10.3389/fcell.2022.976953.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Almeida C, Pongilio RP, Movio MI, Higa GSV, Resende RR, Jiang J, Kinjo ER, Kihara AH. Distinct cell-specific roles of NOX2 and MyD88 in epileptogenesis. Front Cell Dev Biol. 2022. https://doi.org/10.3389/fcell.2022.926776.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Galanopoulou AS, Loscher W, Lubbers L, O’Brien TJ, Staley K, Vezzani A, D’Ambrosio R, White HS, Sontheimer H, Wolf JA, Twyman R, Whittemore V, Wilcox KS, Klein B. Antiepileptogenesis and disease modification: progress, challenges, and the path forward-report of the preclinical working group of the 2018 NINDS-sponsored antiepileptogenesis and disease modification workshop. Epilepsia Open. 2021;6:276–96. https://doi.org/10.1002/epi4.12490.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Walker LE, Sills GJ, Jorgensen A, Alapirtti T, Peltola J, Brodie MJ, Marson AG, Vezzani A, Pirmohamed M. High-mobility group box 1 as a predictive biomarker for drug-resistant epilepsy: a proof-of-concept study. Epilepsia. 2022;63:e1–6. https://doi.org/10.1111/epi.17116.

    Article  CAS  PubMed  Google Scholar 

  222. Ravizza T, Terrone G, Salamone A, Frigerio F, Balosso S, Antoine DJ, Vezzani A. High mobility group box 1 is a novel pathogenic factor and a mechanistic biomarker for epilepsy. Brain Behav Immun. 2018;72:14–21. https://doi.org/10.1016/j.bbi.2017.10.008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH)/National Institute of Neurological Disorders and Stroke (NINDS) grants R01NS100947 (J.J.), R21NS109687 (J.J.), and R61NS124923 (J.J.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The authors apologize for not being able to cite and discuss all publications that are relevant to the broad topics in this review because of the space limitation.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YC, MMN, YY, and JJ; literature search, data collection, and writing: YC and MMN; review and editing: NY, MNS, TLL, YY, and JJ. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Jianxiong Jiang.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Nagib, M.M., Yasmen, N. et al. Neuroinflammatory mediators in acquired epilepsy: an update. Inflamm. Res. 72, 683–701 (2023). https://doi.org/10.1007/s00011-023-01700-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01700-8

Keywords

Navigation