Skip to main content

Advertisement

Log in

MAIT cells and their implication in human oral diseases

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Mucosal-associated invariant T (MAIT) cells are unique innate-like T cells that are abundant in humans, accounting for 1-10% of circulating T cells and about 2% of total T cells in human oral cavity. MAIT cells can mount a strong immune response quickly without exogenous antigens and undergo a phenotypic transformation in the development of diseases. They produce cytokines involved in the Th1 and Th17 immune response and cytotoxic proteins, promote the dysfunction of autoreactive B cell and inhibit the function of NK cells. MAIT cells have been widely explored in autoimmune diseases, inflammatory diseases and tumors, and these mechanisms may also be involved in the pathogenesis of some oral diseases, while MAIT cells have not been systematically discussed in oral diseases.

Methods

We searched PubMed/MEDLINE, EMBASE and Microsoft Bing databases to review and analyze relevant literatures on the impact of MAIT cells in the pathogenesis of human oral diseases.

Conclusion

Collected evidence elucidated the characteristics of MAIT cells and emphasized the potential roles of MAIT cells in oral lichen planus (OLP), chronic graft-versus-host disease (cGVHD), oral squamous cell carcinoma (OSCC), apical periodontitis (AP) and primary Sjogren's syndrome (pSS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nel I, Bertrand L, Toubal A, Lehuen A. MAIT cells, guardians of skin and mucosa? Mucosal Immunol. 2021;14(4):803–14. https://doi.org/10.1038/s41385-021-00391-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Porcelli S, Yockey CE, Brenner MB, Balk SP. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8-alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med. 1993;178(1):1–16. https://doi.org/10.1084/jem.178.1.1.

    Article  CAS  PubMed  Google Scholar 

  3. Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature. 2003;422(6928):164–9. https://doi.org/10.1038/nature01433.

    Article  CAS  PubMed  Google Scholar 

  4. Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16(4):343–53. https://doi.org/10.1038/ni.3123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chandra S, Kronenberg M. Activation and function of iNKT and MAIT Cells. Adv Immunol. 2015;127:145–201. https://doi.org/10.1016/bs.ai.2015.03.003.

    Article  CAS  PubMed  Google Scholar 

  6. Schmaler M, Colone A, Spagnuolo J, Zimmermann M, Lepore M, Kalinichenko A, et al. Modulation of bacterial metabolism by the microenvironment controls MAIT cell stimulation. Mucosal Immunol. 2018;11(4):1060–70. https://doi.org/10.1038/s41385-018-0020-9.

    Article  CAS  PubMed  Google Scholar 

  7. Kumar V, Ahmad A. Role of MAIT cells in the immunopathogenesis of inflammatory diseases: new players in old game. Int Rev Immunol. 2018;37(2):90–110. https://doi.org/10.1080/08830185.2017.1380199.

    Article  CAS  PubMed  Google Scholar 

  8. Zumwalde NA, Gumperz JE. Mucosal-associated invariant T cells in tumors of epithelial origin. Adv Exp Med Biol. 2020;1224:63–77. https://doi.org/10.1007/978-3-030-35723-8_5.

    Article  CAS  PubMed  Google Scholar 

  9. Marie L, Angelis D. The role of Candida in oral lichen planus (OLP). In: The University of Melbourne Library, Minerva Access, 2019; https://hdl.handle.net/11343/241240. Accessed 23 May 2022.

  10. Konuma T, Kohara C, Watanabe E, Takahashi S, Ozawa G, Suzuki K, et al. Reconstitution of circulating mucosal-associated invariant T cells after allogeneic hematopoietic cell transplantation: its association with the riboflavin synthetic pathway of gut microbiota in cord blood transplant recipients. J Immunol. 2020;204(6):1462–73. https://doi.org/10.4049/jimmunol.1900681.

    Article  CAS  PubMed  Google Scholar 

  11. Petley EV, Koay HF, Henderson MA, Sek K, Todd KL, Keam SP, et al. MAIT cells regulate NK cell-mediated tumor immunity. Nat Commun. 2021;12(1):4746. https://doi.org/10.1038/s41467-021-25009-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jewett A, Kos J, Fong Y, Ko MW, Safaei T, Perišić Nanut M, et al. NK cells shape pancreatic and oral tumor microenvironments; role in inhibition of tumor growth and metastasis. Semin Cancer Biol. 2018;53:178–88. https://doi.org/10.1016/j.semcancer.2018.08.001.

    Article  CAS  PubMed  Google Scholar 

  13. Lee JJ, Yeh CY, Jung CJ, Chen CW, Du MK, Yu HM, et al. Skewed distribution of IL-7 receptor-alpha-expressing effector memory CD8+ T cells with distinct functional characteristics in oral squamous cell carcinoma. PLoS ONE. 2014;9(1): e85521. https://doi.org/10.1371/journal.pone.0085521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sundström P, Szeponik L, Ahlmanner F, Sundquist M, Wong JSB, Lindskog EB, et al. Tumor-infiltrating mucosal-associated invariant T (MAIT) cells retain expression of cytotoxic effector molecules. Oncotarget. 2019;10(29):2810–23. https://doi.org/10.18632/oncotarget.26866.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Davanian H, Gaiser RA, Silfverberg M, Hugerth LW, Sobkowiak MJ, Lu L, et al. Mucosal-associated invariant T cells and oral microbiome in persistent apical periodontitis. Int J Oral Sci. 2019;11(2):16. https://doi.org/10.1038/s41368-019-0049-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang JJ, Macardle C, Weedon H, Beroukas D, Banovic T. Mucosal-associated invariant T cells are reduced and functionally immature in the peripheral blood of primary Sjögren’s syndrome patients. Eur J Immunol. 2016;46(10):2444–53. https://doi.org/10.1002/eji.201646300.

    Article  CAS  PubMed  Google Scholar 

  17. Guggino G, Liberto DD, Pizzo ML, Saieva L, Alessandro R, Dieli F, Triolo G, Cacciatore F. IL-17 polarization of MAIT cells is derived from the activation of two different pathways. Eur J Immunol. 2017;47(11):2002–3. https://doi.org/10.1002/eji.201747140.

    Article  CAS  PubMed  Google Scholar 

  18. Dusseaux M, Martin E, Serriari N, Péguillet I, Premel V, Louis D, et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood. 2011;117(4):1250–9. https://doi.org/10.1182/blood-2010-08-303339.

    Article  CAS  PubMed  Google Scholar 

  19. Wang SR, Zhong N, Zhang XM, Zhao ZB, Balderas R, Li L, et al. OMIP 071: a 31-parameter flow cytometry panel for in-depth immunophenotyping of human T-cell subsets using surface markers. Cytometry A. 2021;99(3):273–7. https://doi.org/10.1002/cyto.a.24272.

    Article  CAS  PubMed  Google Scholar 

  20. Acquaviva M, Bassani C, Sarno N, Dalla Costa G, Romeo M, Sangalli F, et al. Loss of circulating CD8+CD161 high T cells in primary progressive multiple sclerosis. Front Immunol. 2019;10:1922. https://doi.org/10.3389/fimmu.2019.01922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leeansyah E, Loh L, Nixon DF, Sandberg JK. Acquisition of innate-like microbial reactivity in mucosal tissues during human fetal MAIT-cell development. Nat Commun. 2014;5:3143. https://doi.org/10.1038/ncomms4143.

    Article  CAS  PubMed  Google Scholar 

  22. Koay H-F, Gherardin NA, Enders A, Loh L, Mackay LK, Almeida CF, et al. A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat Immunol. 2016;17(11):1300–11. https://doi.org/10.1038/ni.3565.

    Article  CAS  PubMed  Google Scholar 

  23. Koay H-F, Godfrey DI. MicroRNA-managing the development of MAIT cells. Immunol Cell Biol. 2019;97(2):121–3. https://doi.org/10.1111/imcb.12232.

    Article  PubMed  Google Scholar 

  24. Legoux F, Bellet D, Daviaud C, Morr YE, Darbois A, Niort K. Microbial metabolites control the thymic development of mucosal-associated invariant T cells. Science. 2019;366(6464):494–9. https://doi.org/10.1126/science.aaw2719.

    Article  CAS  PubMed  Google Scholar 

  25. Walker LJ, Tharmalingam H, Klenerman P. The rise and fall of MAIT cells with age. Scand J Immunol. 2014;80(6):462–3. https://doi.org/10.1111/sji.12237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Keller AN, Eckle SB, Xu W, Liu L, Hughes VA, Mak JY, et al. Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells. Nat Immunol. 2017;18(4):402–11. https://doi.org/10.1038/ni.3679.

    Article  CAS  PubMed  Google Scholar 

  27. Jiang J, Chen X, An H, Yang B, Zhang F, Cheng X. Enhanced immune response of MAIT cells in tuberculous pleural effusions depends on cytokine signaling. Sci Rep. 2016;6:32320. https://doi.org/10.1038/srep32320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ussher JE, van Wilgenburg B, Hannaway RF, Ruustal K, Phalora P, Kurioka A, et al. TLR signaling in human antigen-presenting cells regulates MR1-dependent activation of MAIT cells. Eur J Immunol. 2016;46(7):1600–14. https://doi.org/10.1002/eji.201545969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sattler A, Dang-Heine C, Reinke P, Babel N. IL-15 dependent induction of IL-18 secretion as a feedback mechanism controlling human MAIT-cell effector functions. Eur J Immunol. 2015;45(8):2286–98. https://doi.org/10.1002/eji.201445313.

    Article  CAS  PubMed  Google Scholar 

  30. Willing A, Jäger J, Reinhardt S, Kursawe N, Friese MA. Production of IL-17 by MAIT cells is increased in multiple sclerosis and is associated with IL-7 receptor expression. J Immunol. 2018;200(3):974–82. https://doi.org/10.4049/jimmunol.1701213.

    Article  CAS  PubMed  Google Scholar 

  31. Cole S, Murray J, Simpson C, Okoye R, Tyson K, Griffiths M, et al. Interleukin (IL)-12 and IL-18 synergize to promote MAIT cell IL-17A and IL-17F production independently of IL-23 signaling. Front Immunol. 2020;11: 585134. https://doi.org/10.3389/fimmu.2020.585134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van Wilgenburg B, Scherwitzl I, Hutchinson EC, Leng T, Kurioka A, Kulicke C, et al. MAIT cells are activated during human viral infections. Nat Commun. 2016;7:11653. https://doi.org/10.1038/ncomms11653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wilgenburg BV, Loh L, Chen Z, Pediongco TJ, Wang H, Shi M, et al. MAIT cells contribute to protection against lethal influenza infection in vivo. Nat Commun. 2018;9(1):4706. https://doi.org/10.1038/s41467-018-07207-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sobkowiak MJ, Davanian H, Heymann R, Gibbs A, Emgård J, Dias J, et al. Tissue-resident MAIT cell populations in human oral mucosa exhibit an activated profile and produce IL-17. Eur J Immunol. 2019;49(1):133–43. https://doi.org/10.1002/eji.201847759.

    Article  CAS  PubMed  Google Scholar 

  35. Ichimura M, Hiratsuka K, Ogura N, Utsunomiya T, Sakamaki H, Kondoh T, et al. Expression profile of chemokines and chemokine receptors in epithelial cell layers of oral lichen planus. J Oral Pathol Med. 2006;35(3):167–74. https://doi.org/10.1111/j.1600-0714.2006.00402.x.

    Article  CAS  PubMed  Google Scholar 

  36. Yang JY, Wang F, Zhou G. Characterization and function of circulating mucosal-associated invariant T cells and γδ T cells in oral lichen planus. J Oral Pathol Med. 2022;51(1):74–85. https://doi.org/10.1111/jop.13250.

    Article  CAS  PubMed  Google Scholar 

  37. Tastan C, Karhan E, Zhou W, Fleming E, Voigt AY, Yao X, et al. Tuning of human MAIT cell activation by commensal bacteria species and MR1-dependent T-cell presentation. Mucosal Immunol. 2018;11(6):1591–605. https://doi.org/10.1038/s41385-018-0072-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ohno S, Tateishi Y, Tatemoto Y, Morishita K, Sasabe E, Yamamoto T. Enhanced expression of toll-like receptor 2 in lesional tissues and peripheral blood monocytes of patients with oral lichen planus. J Dermatol. 2011;38(4):335–44. https://doi.org/10.1111/j.1346-8138.2010.00956.x.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y, Liu W, Zhang S, Dan H, Lu R, Wang F, et al. Salivary and serum interleukin-18 in patients with oral lichen planus: a study in an ethnic Chinese population. Inflammation. 2012;35(2):399–404. https://doi.org/10.1007/s10753-011-9327-3.

    Article  CAS  PubMed  Google Scholar 

  40. Fairweather D, Yusung S, Frisancho S, Barrett M, Gatewood S, Steele R, et al. Differential expression of TLR-2 and TLR-4 in the epithelial cells in oral lichen planus. J Immunol. 2003;170(9):4731–7. https://doi.org/10.1016/j.archoralbio.2011.10.013.

    Article  CAS  PubMed  Google Scholar 

  41. He Y, Gong D, Shi C, Shao F, Shi J, Fei J. Dysbiosis of oral buccal mucosa microbiota in patients with oral lichen planus. Oral Dis. 2017;23(5):674–82. https://doi.org/10.1111/odi.12657.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang J, Tan YQ, Wei MH, Ye XJ, Chen GY, Lu R, et al. TLR4-induced B7–H1 on keratinocytes negatively regulates CD4+ T cells and CD8+ T cells responses in oral lichen planus. Exp Dermatol. 2017;26(5):409–15. https://doi.org/10.1111/exd.13244.

    Article  CAS  PubMed  Google Scholar 

  43. Wang Y, Shang S, Sun Q, Chen J, Du G, Nie H, et al. Increased infiltration of CD11 c+/CD123+ dendritic cell subsets and upregulation of TLR/IFN-α signaling participate in pathogenesis of oral lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;125(5):459–67. https://doi.org/10.1016/j.oooo.2017.12.003.

    Article  PubMed  Google Scholar 

  44. Weaver CT, Elson CO, Fouser LA, Kolls JK. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu Rev Pathol. 2013;8:477–512. https://doi.org/10.1146/annurev-pathol-011110-130318.

    Article  CAS  PubMed  Google Scholar 

  45. Veldhoen M. Interleukin 17 is a chief orchestrator of immunity. Nat Immunol. 2017;18(6):612–21. https://doi.org/10.1038/ni.3742.

    Article  CAS  PubMed  Google Scholar 

  46. Parks OB, Pociask DA, Hodzic Z, Kolls JK, Good M. Interleukin-22 signaling in the regulation of intestinal health and disease. Front Cell Dev Biol. 2016;3:85. https://doi.org/10.3389/fcell.2015.00085.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fujita H. The role of IL-22 and Th22 cells in human skin diseases. J Dermatol Sci. 2013;72(1):3–8. https://doi.org/10.1016/j.jdermsci.2013.04.028.

    Article  CAS  PubMed  Google Scholar 

  48. Gibbs A, Leeansyah E, Introit A, Paquin-Proulx D, Hasselrot K, Andersson E, et al. MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation. Mucosal Immunol. 2017;10(1):35–45. https://doi.org/10.1038/mi.2016.30.

    Article  CAS  PubMed  Google Scholar 

  49. Rouxel O, Lehuen A. Mucosal-associated invariant T cells in autoimmune and immune-mediated diseases. Immunol Cell Biol. 2018;96(6):618–29. https://doi.org/10.1111/imcb.12011.

    Article  CAS  PubMed  Google Scholar 

  50. Lu R, Zeng X, Han Q, Lin M, Long L, Dan H, et al. Overexpression and selectively regulatory roles of IL-23/IL-17 axis in the lesions of oral lichen planus. Mediators Inflamm. 2014;2014: 701094. https://doi.org/10.1155/2014/701094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen J, Feng J, Chen X, Xu H, Zhou Z, Shen X, et al. Immunoexpression of interleukin-22 and interleukin-23 in oral and cutaneous lichen planus lesions: a preliminary study. Mediators Inflamm. 2013;2013: 801974. https://doi.org/10.1155/2013/801974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arora S, Verma M, Gupta SR, Urs AB, Dhakad MS, Kaur R. Phenotypic variability and therapeutic implications of Candida species in patients with oral lichen planus. Biotech Histochem. 2016;91(4):237–41. https://doi.org/10.3109/10520295.2015.1127425.

    Article  CAS  PubMed  Google Scholar 

  53. Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, et al. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol. 2010;8(6): e1000407. https://doi.org/10.1371/journal.pbio.1000407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pouralibaba F, Babaloo Z, Pakdel F, Aghazadeh M. Serum level of interleukin 17 in patients with erosive and non erosive oral lichen planus. J Dent Res Dent Clin Dent Prospects. 2013;7(2):91–4. https://doi.org/10.5681/joddd.2013.016.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Le Bourhis L, Dusseaux M, Bohineust A, Bessoles S, Martin E, Premel V, et al. MAIT cells detect and efficiently lyse bacterially-infected epithelial cell. PLoS Pathog. 2013;9(10): e1003681. https://doi.org/10.1371/journal.ppat.1003681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kurioka A, Ussher JE, Cosgrove C, Clough C, Fergusson JR, Smith K, et al. MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol. 2015;8(2):429–40. https://doi.org/10.1038/mi.2014.81.

    Article  CAS  PubMed  Google Scholar 

  57. Shimizu M, Higaki Y, Higaki M, Kawashima M. The role of granzyme B-expressing CD8-positive T cells in apoptosis of keratinocytes in lichen planus. Arch Dermatol Res. 1997;289(9):527–32. https://doi.org/10.1007/s004030050234.

    Article  CAS  PubMed  Google Scholar 

  58. Gade P, Ramachandran G, Maachani UB, Rizzo MA, Okada T, Prywes R, et al. An IFN-γ-stimulated ATF6-C/EBP-β-signaling pathway critical for the expression of death associated protein kinase 1 and induction of autophagy. Proc Natl Acad Sci U S A. 2012;109(26):10316–21. https://doi.org/10.1073/pnas.1119273109.

    Article  PubMed  PubMed Central  Google Scholar 

  59. MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A. 1997;94(10):5243–8. https://doi.org/10.1073/pnas.94.10.5243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Le Bourhis L, Martin E, Péguillet I, Guihot A, Froux N, Coré M, et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol. 2010;11(8):701–8. https://doi.org/10.1038/ni.1890.

    Article  CAS  PubMed  Google Scholar 

  61. Khan A, Farah CS, Savage NW, Walsh LJ, Harbrow DJ, Sugerman PB. Th1 cytokines in oral lichen planus. J Oral Pathol Med. 2003;32(2):77–83. https://doi.org/10.1034/j.1600-0714.2003.00077.x.

    Article  CAS  PubMed  Google Scholar 

  62. Malarkodi T, Sathasivasubramanian S. Quantitative analysis of salivary TNF-α in oral lichen planus patients. Int J Dent. 2015;2015: 283465. https://doi.org/10.1155/2015/283465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ghallab NA, el-Wakeel N, Shaker OG. Levels of salivary IFN-gamma, TNF-alfa, and TNF receptor-2 as prognostic markers in (erosive) oral lichen planus. Mediators Inflamm. 2010;2010: 847632. https://doi.org/10.1155/2010/847632.

    Article  CAS  PubMed  Google Scholar 

  64. Lu R, Zhou G, Du G, Xu X, Yang J, Hu J. Expression of T-bet and GATA-3 in peripheral blood mononuclear cells of patients with oral lichen planus. Arch Oral Biol. 2011;56(5):499–505. https://doi.org/10.1016/j.archoralbio.2010.11.006.

    Article  CAS  PubMed  Google Scholar 

  65. Fall-Dickson JM, Pavletic SZ, Mays JW, Schubert MM. Oral complications of chronic graft-versus-host disease. J Natl Cancer Inst Monogr. 2019;2019(53):lgz007. https://doi.org/10.1093/jncimonographs/lgz007.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Weng X, Xing Y, Cheng B. Multiple and recurrent squamous cell carcinoma of the oral cavity after graft-versus-host disease. J Oral Maxillofac Surg. 2017;75(9):1899–905. https://doi.org/10.1016/j.joms.2017.02.012.

    Article  PubMed  Google Scholar 

  67. Blazar BR, Murphy WJ, Abedi M. Advances in graft-versus-host disease biology and therapy. Nat Rev Immunol. 2012;12(6):443–58. https://doi.org/10.1038/nri3212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stikvoort A, Chen Y, Rådestad E, Törlén J, Lakshmikanth T, Björklund A, et al. Combining flow and mass cytometry in the search for biomarkers in chronic graft-versus-host disease. Front Immunol. 2017;8:717. https://doi.org/10.3389/fimmu.2017.00717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bhattacharyya A, Hanafi LA, Sheih A, Golob JL, Srinivasan S, Boeckh MJ, et al. Graft-derived reconstitution of mucosal-associated invariant T cells after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2018;24(2):242–51. https://doi.org/10.1016/j.bbmt.2017.10.003.

    Article  CAS  PubMed  Google Scholar 

  70. van der Waart AB, van der Velden WJ, van Halteren AG, Leenders MJ, Feuth T, Blijlevens NM, et al. Decreased levels of circulating IL17-producing CD161+CCR6+ T cells are associated with graft-versus-host disease after allogeneic stem cell transplantation. PLoS ONE. 2012;7(12): e50896. https://doi.org/10.1371/journal.pone.0050896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhao XY, Lv M, Xu LL, Qian X, Huang XJ. Donor Th17 cells and IL-21 may contribute to the development of chronic graft-versus-host disease after allogeneic transplantation. Eur J Immunol. 2013;43(3):838–50. https://doi.org/10.1002/eji.201242816.

    Article  CAS  PubMed  Google Scholar 

  72. Miyazaki Y, Miyake S, Chiba A, Lantz O, Yamamura T. Mucosal-associated invariant T cells regulate Th1 response in multiple sclerosis. Int Immunol. 2011;23(9):529–35. https://doi.org/10.1093/intimm/dxr047.

    Article  CAS  PubMed  Google Scholar 

  73. Hiejima E, Kawai T, Nakase H, Tsuruyama T, Morimoto T, Yasumi T, et al. Reduced numbers and proapoptotic features of mucosal-associated invariant T cells as a characteristic finding in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2015;21(7):1529–40. https://doi.org/10.1097/MIB.0000000000000397.

    Article  PubMed  Google Scholar 

  74. Zhang L, Chu J, Yu J, Wei W. Cellular and molecular mechanisms in graft-versus-host disease. J Leukoc Biol. 2016;99(2):279–87. https://doi.org/10.1189/jlb.4RU0615-254RR.

    Article  CAS  PubMed  Google Scholar 

  75. Okamoto S, Fujiwara H, Nishimori H, Matsuoka K, Fujii N, Kondo E, et al. Anti-IL-12/23 p40 antibody attenuates experimental chronic graft-versus-host disease via suppression of IFN-γ/IL-17-producing cells. J Immunol. 2015;194(3):1357–63. https://doi.org/10.4049/jimmunol.1400973.

    Article  CAS  PubMed  Google Scholar 

  76. Wu Y, Bastian D, Schutt S, Nguyen H, Fu J, Heinrichs J, et al. Essential role of interleukin-12/23p40 in the development of graft-versus-host disease in mice. Biol Blood Marrow Transplant. 2015;21(7):1195–204. https://doi.org/10.1016/j.bbmt.2015.03.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hegde P, Weiss E, Paradis V, Wan J, Mabire M, Sukriti S, et al. Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver. Nat Commun. 2018;9(1):2146. https://doi.org/10.1038/s41467-018-04450-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kurioka A, Walker LJ, Klenerman P, Willberg CB. MAIT cells: new guardians of the liver. Clin Transl Immunology. 2016;5(8): e98. https://doi.org/10.1038/cti.2016.51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Böttcher K, Rombouts K, Saffioti F, Roccarina D, Rosselli M, Hall A, et al. MAIT cells are chronically activated in patients with autoimmune liver disease and promote profibrogenic hepatic stellate cell activation. Hepatology. 2018;68(1):172–86. https://doi.org/10.1002/hep.29782.

    Article  CAS  PubMed  Google Scholar 

  80. Kyrcz-Krzemień S, Helbig G, Zielińska P, Markiewicz M. The kinetics of mRNA transforming growth factor beta1 expression and its serum concentration in graft-versus-host disease after allogeneic hemopoietic stem cell transplantation for myeloid leukemias. Med Sci Monit. 2011;17(6):CR322-328; https://doi.org/10.12659/msm.881804

  81. Zhang Y, McCormick LL, Gilliam AC. Latency-associated peptide prevents skin fibrosis in murine sclerodermatous graft-versus-host disease, a model for human scleroderma. J Invest Dermatol. 2003;121(4):713–9. https://doi.org/10.1046/j.1523-1747.2003.12517.x.

    Article  CAS  PubMed  Google Scholar 

  82. Park MJ, Moon SJ, Lee EJ, Jung KA, Kim EK, Kim DS, et al. IL-1-IL-17 signaling axis contributes to fibrosis and inflammation in two different murine models of systemic sclerosis. Front Immunol. 2018;9:1611. https://doi.org/10.3389/fimmu.2018.01611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pedersen SJ, Maksymowych WP. The pathogenesis of ankylosing spondylitis: an update. Curr Rheumatol Rep. 2019;21(10):58. https://doi.org/10.1007/s11926-019-0856-3.

    Article  CAS  PubMed  Google Scholar 

  84. Sanz I, Lee FE. B cells as therapeutic targets in SLE. Nat Rev Rheumatol. 2010;6(6):326–37. https://doi.org/10.1038/nrrheum.2010.68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Manzel L, Macfarlane DE. CpG-oligodeoxynucleotide supports growth of IL-6-dependent 7TD1 murine hybridoma cells. Life Sci. 1998;62(1):23–7. https://doi.org/10.1016/s0024-3205(97)01034-5.

    Article  CAS  PubMed  Google Scholar 

  86. Korn T, Bettelli E, Gao W, Awasthi A, Jäger A, Strom TB, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature. 2007;448(7152):484–7. https://doi.org/10.1038/nature05970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tesmer LA, Lundy SK, Sarkar S, Fox DA. Th17 cells in human disease. Immunol Rev. 2008;223:87–113. https://doi.org/10.1111/j.1600-065X.2008.00628.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bennett MS, Trivedi S, Iyer AS, Hale JS, Leung DT. Human mucosal-associated invariant T (MAIT) cells possess capacity for B cell help. J Leukoc Biol. 2017;102(5):1261–9. https://doi.org/10.1189/jlb.4A0317-116R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chiba A, Tamura N, Yoshikiyo K, Murayama G, Kitagaichi M, Yamaji K, et al. Activation status of mucosal-associated invariant T cells reflects disease activity and pathology of systemic lupus erythematosus. Arthritis Res Ther. 2017;19(1):58. https://doi.org/10.1186/s13075-017-1257-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Le Huu D, Matsushita T, Jin G, Hamaguchi Y, Hasegawa M, Takehara K, et al. IL-6 blockade attenuates the development of murine sclerodermatous chronic graft-versus-host disease. J Invest Dermatol. 2012;132(12):2752–61. https://doi.org/10.1038/jid.2012.226.

    Article  CAS  PubMed  Google Scholar 

  91. Markopoulos AK. Current aspects on oral squamous cell carcinoma. Open Dent J. 2012;6:126–30. https://doi.org/10.2174/1874210601206010126.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Choi S, Myers JN. Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy. J Dent Res. 2008;87(1):14–32. https://doi.org/10.1177/154405910808700104.

    Article  CAS  PubMed  Google Scholar 

  93. Saloura V, Izumchenko E, Zuo Z, Bao R, Korzinkin M, Ozerov I, et al. Immune profiles in primary squamous cell carcinoma of head and neck. Oral Oncol. 2019;96:77–88. https://doi.org/10.1016/j.oraloncology.2019.06.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ling L, Lin Y, Zheng W, Hong S, Tang X, Zhao P, et al. Circulating and tumor-infiltrating mucosal associated invariant T (MAIT) cells in colorectal cancer patients. Sci Rep. 2016;6:20358. https://doi.org/10.1038/srep20358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Won EJ, Ju JK, Cho YN, Jin HM, Park KJ, Kim TJ, et al. Clinical relevance of circulating mucosal-associated invariant T cell levels and their anti-cancer activity in patients with mucosal-associated cancer. Oncotarget 2016;7(46):76274–76290;https://doi.org/10.18632/oncotarget.11187

  96. Kelly J, Minoda Y, Meredith T, Cameron G, Philipp MS, Pellicci DG, et al. Chronically stimulated human MAIT cells are unexpectedly potent IL-13 producers. Immunol Cell Biol. 2019;97(8):689–99. https://doi.org/10.1111/imcb.12281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Melo AM, O’Brien AM, Phelan JJ, Kennedy SA, Wood NAW, Veerapen N, et al. Mucosal-associated invariant T cells display diminished effector capacity in oesophageal adenocarcinoma. Front Immunol. 2019;10:1580. https://doi.org/10.3389/fimmu.2019.01580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zabijak L, Attencourt C, Guignant C, Chatelain D, Marcelo P, Marolleau JP, et al. Increased tumor infiltration by mucosal-associated invariant T cells correlates with poor survival in colorectal cancer patients. Cancer Immunol Immunother. 2015;64(12):1601–8. https://doi.org/10.1007/s00262-015-1764-7.

    Article  CAS  PubMed  Google Scholar 

  99. Zhao Y, Shao Q, Peng G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cell Mol Immunol. 2020;17(1):27–35. https://doi.org/10.1038/s41423-019-0344-8.

    Article  CAS  PubMed  Google Scholar 

  100. Sakata J, Hirosue A, Yoshida R, Kawahara K, Matsuoka Y, Yamamoto T, et al. HMGA2 contributes to distant metastasis and poor prognosis by promoting angiogenesis in oral squamous cell carcinoma. Int J Mol Sci. 2019;20(10):2473. https://doi.org/10.3390/ijms20102473.

    Article  CAS  PubMed Central  Google Scholar 

  101. Shivamallappa SM, Venkatraman NT, Shreedhar B, Mohanty L, Shenoy S. Role of angiogenesis in oral squamous cell carcinoma development and metastasis: an immunohistochemical study. Int J Oral Sci. 2011;3(4):216–24. https://doi.org/10.4248/IJOS11077.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci. 2001;114(Pt 5):853–65. https://doi.org/10.1242/jcs.114.5.853.

    Article  CAS  PubMed  Google Scholar 

  103. Sahibzada HA, Khurshid Z, Khan RS, Naseem M, Siddique KM, Mali M, et al. Salivary IL-8, IL-6 and TNF-α as potential diagnostic biomarkers for oral cancer. Diagnostics (Basel). 2017;7(2):21. https://doi.org/10.3390/diagnostics7020021.

    Article  CAS  Google Scholar 

  104. Duan M, Goswami S, Shi JY, Wu LJ, Wang XY, Ma JQ, et al. Activated and exhausted MAIT cells foster disease progression and indicate poor outcome in hepatocellular carcinoma. Clin Cancer Res. 2019;25(11):3304–16. https://doi.org/10.1158/1078-0432.CCR-18-3040.

    Article  PubMed  Google Scholar 

  105. Ioannidis M, Cerundolo V, Salio M. The immune modulating properties of mucosal-associated invariant T Cells. Front Immunol. 2020;11:1556. https://doi.org/10.3389/fimmu.2020.01556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yan J, Allen S, McDonald E, Das I, Mak JYW, Liu L, et al. MAIT cells promote tumor initiation, growth, and metastases via tumor MR1. Cancer Discov. 2020;10(1):124–41. https://doi.org/10.1158/2159-8290.CD-19-0569.

    Article  CAS  PubMed  Google Scholar 

  107. Jewett A, Head C, Cacalano NA. Emerging mechanisms of immunosuppression in oral cancers. J Dent Res. 2006;85(12):1061–73. https://doi.org/10.1177/154405910608501201.

    Article  CAS  PubMed  Google Scholar 

  108. López-Soto A, Huergo-Zapico L, Acebes-Huerta A, Villa-Alvarez M, Gonzalez S. NKG2D signaling in cancer immunosurveillance. Int J Cancer. 2015;136(8):1741–50. https://doi.org/10.1002/ijc.28775.

    Article  CAS  PubMed  Google Scholar 

  109. Haeryfar SMM, Shaler CR, Rudak PT. Mucosa-associated invariant T cells in malignancies: a faithful friend or formidable foe? Cancer Immunol Immunother. 2018;67(12):1885–96. https://doi.org/10.1007/s00262-018-2132-1.

    Article  CAS  PubMed  Google Scholar 

  110. Zumwalde NA, Haag JD, Gould MN, Gumperz JE. Mucosal associated invariant T cells from human breast ducts mediate a Th17-skewed response to bacterially exposed breast carcinoma cells. Breast Cancer Res. 2018;20(1):111. https://doi.org/10.1186/s13058-018-1036-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. McGilvray RW, Eagle RA, Watson NF, Al-Attar A, Ball G, Jafferji I, et al. NKG2D ligand expression in human colorectal cancer reveals associations with prognosis and evidence for immunoediting. Clin Cancer Res. 2009;15(22):6993–7002. https://doi.org/10.1158/1078-0432.CCR-09-0991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tamaki S, Sanefuzi N, Kawasaki M, Aoki K, Imani Y, Yamasaki Y, et al. Association between soluble MICA levels and disease stage IV oral squamous cell carcinoma in Japanese patients. Hum Immunol. 2008;69(2):88–93. https://doi.org/10.1016/j.humimm.2008.01.010.

    Article  CAS  PubMed  Google Scholar 

  113. Chen S, Ying M, Lin X, Zheng X, Liu C, Liu H. Expression of MICA in oral squamous carcinoma cells and its effect on NK cells. Int J Clin Exp Med. 2015;8(10):18208–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Flores-Villanueva P, Sobhani N, Wang X, Li Y. MR1-restricted T cells in cancer immunotherapy. Cancers (Basel). 2020;12(8):2145. https://doi.org/10.3390/cancers12082145.

    Article  CAS  Google Scholar 

  115. Godfrey DI, Koay HF, McCluskey J, Gherardin NA. The biology and functional importance of MAIT cells. Nat Immunol. 2019;20(9):1110–28. https://doi.org/10.1038/s41590-019-0444-8.

    Article  CAS  PubMed  Google Scholar 

  116. Paydarnia N, Khoshtinat Nikkhoi S, Fakhravar A, Mehdiabdol M, Heydarzadeh H, Ranjbar S. Synergistic effect of granzyme B-azurin fusion protein on breast cancer cells. Mol Biol Rep. 2019;46(3):3129–40. https://doi.org/10.1007/s11033-019-04767-x.

    Article  CAS  PubMed  Google Scholar 

  117. Chen XJ, Zhang XQ, Tang MX, Liu Q, Zhou G. Anti-PD-L1-modified and ATRA-loaded nanoparticles for immuno-treatment of oral dysplasia and oral squamous cell carcinoma. Nanomedicine (Lond). 2020;15(10):951–68. https://doi.org/10.2217/nnm-2019-0397.

    Article  CAS  Google Scholar 

  118. Belai EB, de Oliveira CE, Gasparoto TH, Ramos RN, Torres SA, Garlet GP, et al. PD-1 blockage delays murine squamous cell carcinoma development. Carcinogenesis. 2014;35(2):424–31. https://doi.org/10.1093/carcin/bgt305.

    Article  CAS  PubMed  Google Scholar 

  119. Márton IJ, Kiss C. Overlapping protective and destructive regulatory pathways in apical periodontitis. J Endod. 2014;40(2):155–63. https://doi.org/10.1016/j.joen.2013.10.036.

    Article  PubMed  Google Scholar 

  120. Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: a caspase-1 activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10(3):241–7. https://doi.org/10.1038/ni.1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Anthony OE, Rachel O. The assessment of CD4 lymphocyte counts in patients with chronic periodontitis in Benin City. Nigeria Asian Pac J Trop Dis. 2012;2:S639–41. https://doi.org/10.1016/S2222-1808(12)60236-9.

    Article  Google Scholar 

  122. Ajuz NC, Antunes H, Mendonça TA, Pires FR, Siqueira JF Jr, Armada L. Immunoexpression of interleukin 17 in apical periodontitis lesions. J Endod. 2014;40(9):1400–3. https://doi.org/10.1016/j.joen.2014.03.024.

    Article  PubMed  Google Scholar 

  123. Hinks TS. Mucosal-associated invariant T cells in autoimmunity, immune-mediated diseases and airways disease. Immunology. 2016;148(1):1–12. https://doi.org/10.1111/imm.12582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Figueredo CM, Lira-Junior R, Love RM. T and B cells in periodontal disease: new functions in a complex scenario. Int J Mol Sci. 2019;20(16):3949. https://doi.org/10.3390/ijms20163949.

    Article  CAS  PubMed Central  Google Scholar 

  125. Nair PN. Pathogenesis of apical periodontitis and the causes of endodontic failures. Crit Rev Oral Biol Med. 2004;15(6):348–81. https://doi.org/10.1177/154411130401500604.

    Article  CAS  PubMed  Google Scholar 

  126. Bowman SJ. Primary Sjogren’s syndrome. Lupus. 2018;27(1):32–5. https://doi.org/10.1177/0961203318801673.

    Article  CAS  PubMed  Google Scholar 

  127. Gan Y, Zhao X, He J, Liu X, Li Y, Sun X, et al. Increased interleukin-17F is associated with elevated autoantibody levels and more clinically relevant than interleukin-17A in primary Sjögren’s syndrome. J Immunol Res. 2017;2017:4768408. https://doi.org/10.1155/2017/4768408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (No. 8197094, No. 81771080) to Professor Zhou Gang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zhou.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Wang, F., Yang, JY. et al. MAIT cells and their implication in human oral diseases. Inflamm. Res. 71, 1041–1054 (2022). https://doi.org/10.1007/s00011-022-01600-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01600-3

Keywords

Navigation