Skip to main content

Advertisement

Log in

γδ T cells in oral diseases

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

γδ T cells are a distinct subset of unconventional T cells, which link innate and adaptive immunity by secreting cytokines and interacting with other immune cells, thereby modulating immune responses. As the first line of host defense, γδ T cells are essential for mucosal homeostasis and immune surveillance. When abnormally activated or impaired, γδ T cells can contribute to pathogenic processes. Accumulating evidence has revealed substantial impacts of γδ T cells on the pathogenesis of cancers, infections, and immune-inflammatory diseases. γδ T cells exhibit dual roles in cancers, promoting or inhibiting tumor growth, depending on their phenotypes and the clinical stage of cancers. During infections, γδ T cells exert high cytotoxic activity in infectious diseases, which is essential for combating bacterial and viral infections by recognizing foreign antigens and activating other immune cells. γδ T cells are also implicated in the onset and progression of immune-inflammatory diseases. However, the specific involvement and underlying mechanisms of γδ T cells in oral diseases have not been systematically discussed.

Methods

We conducted a systematic literature review using the PubMed/MEDLINE databases to identify and analyze relevant literature on the roles of γδ T cells in oral diseases.

Results

The literature review revealed that γδ T cells play a pivotal role in maintaining oral mucosal homeostasis and are involved in the pathogenesis of oral cancers, periodontal diseases, graft-versus-host disease (GVHD), oral lichen planus (OLP), and oral candidiasis. γδ T cells mainly influence various pathophysiological processes, such as anti-tumor activity, eradication of infection, and immune response regulation.

Conclusion

This review focuses on the involvement of γδ T cells in oral diseases, with a particular emphasis on the main functions and underlying mechanisms by which γδ T cells influence the pathogenesis and progression of these conditions. This review underscores the potential of γδ T cells as therapeutic targets in managing oral health issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

In this manuscript, we conducted a systematic literature review using the PubMed/MEDLINE databases to identify and analyze relevant literature on the roles of γδ T cells in oral diseases.

References

  1. Ribot JC, Lopes N, Silva-Santos B. γδ T cells in tissue physiology and surveillance. Nat Rev Immunol. 2021;21(4):221–32. https://doi.org/10.1038/s41577-020-00452-4.

    Article  CAS  PubMed  Google Scholar 

  2. Muñoz-Ruiz M, Sumaria N, Pennington DJ, et al. Thymic determinants of γδ T cell differentiation. Trends Immunol. 2017;38(5):336–44. https://doi.org/10.1016/j.it.2017.01.007.

    Article  CAS  PubMed  Google Scholar 

  3. Jensen KD, Su X, Shin S, et al. Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity. 2008;29(1):90–100. https://doi.org/10.1016/j.immuni.2008.04.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bonneville M, O’Brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010;10(7):467–78. https://doi.org/10.1038/nri2781.

    Article  CAS  PubMed  Google Scholar 

  5. Papotto PH, Reinhardt A, Prinz I, et al. Innately versatile: γδ17T cells in inflammatory and autoimmune diseases. J Autoimmun. 2018. https://doi.org/10.1016/j.jaut.2017.11.006.

    Article  PubMed  Google Scholar 

  6. Zhao Y, Niu C, Cui J. Gamma-delta (γδ) T cells: friend or foe in cancer development? J Transl Med. 2018;16(1):3. https://doi.org/10.1186/s12967-017-1378-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Paul S, Lal G. Regulatory and effector functions of gamma-delta (γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer. Int J Cancer. 2016;139(5):976–85. https://doi.org/10.1002/ijc.30109.

    Article  CAS  PubMed  Google Scholar 

  8. Vavassori S, Kumar A, Wan GS, et al. Butyrophilin 3A1 binds phosphorylated antigens and stimulates human γδ T cells. Nat Immunol. 2013;14(9):908–16. https://doi.org/10.1038/ni.2665.

    Article  CAS  PubMed  Google Scholar 

  9. Salim M, Knowles TJ, Baker AT, et al. BTN3A1 discriminates γδ T cell phosphoantigens from nonantigenic small molecules via a conformational sensor in Its B30.2 domain. ACS Chem Biol. 2017;12(10):2631–43. https://doi.org/10.1021/acschembio.7b00694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brandes M, Willimann K, Moser B. Professional antigen-presentation function by human gammadelta T Cells. Science. 2005;309(5732):264–8. https://doi.org/10.1126/science.1110267.

    Article  CAS  PubMed  Google Scholar 

  11. Papotto PH, Ribot JC, Silva-Santos B. IL-17(+) γδ T cells as kick-starters of inflammation. Nat Immunol. 2017;18(6):604–11. https://doi.org/10.1038/ni.3726.

    Article  CAS  PubMed  Google Scholar 

  12. Isailovic N, Daigo K, Mantovani A, et al. Interleukin-17 and innate immunity in infections and chronic inflammation. J Autoimmun. 2015. https://doi.org/10.1016/j.jaut.2015.04.006.

    Article  PubMed  Google Scholar 

  13. Sutton CE, Lalor SJ, Sweeney CM, et al. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity. 2009;31(2):331–41. https://doi.org/10.1016/j.immuni.2009.08.001.

    Article  CAS  PubMed  Google Scholar 

  14. Hosokawa H, Rothenberg EV. How transcription factors drive choice of the T cell fate. Nat Rev Immunol. 2021;21(3):162–76. https://doi.org/10.1038/s41577-020-00426-6.

    Article  CAS  PubMed  Google Scholar 

  15. Ciofani M, ZúñIGA-PFLüCKER JC. Determining γδ versus αß T cell development. Nat Rev Immunol. 2010;10(9):657–63. https://doi.org/10.1038/nri2820.

    Article  CAS  PubMed  Google Scholar 

  16. Hu Y, Hu Q, Li Y, et al. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther. 2023;8(1):434. https://doi.org/10.1038/s41392-023-01653-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boehme L, Roels J, Taghon T,. Development of γδ T cells in the thymus—A human perspective. Semin Immunol. 2022. https://doi.org/10.1016/j.smim.2022.101662.

    Article  PubMed  Google Scholar 

  18. Fichtner AS, Ravens S, Prinz I,. Human γδ TCR repertoires in health and disease. Cells. 2020. https://doi.org/10.3390/cells9040800.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Qi C, Wang Y, Li P, et al. Gamma Delta T cells and their pathogenic role in psoriasis. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.627139.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang Y, Li L, Yuan L, et al. A structural change in butyrophilin upon phosphoantigen binding underlies phosphoantigen-mediated Vγ9Vδ2 T cell activation. Immunity. 2019;50(4):1043-53.e5. https://doi.org/10.1016/j.immuni.2019.02.016.

    Article  CAS  PubMed  Google Scholar 

  21. Koren N, Zubeidat K, Saba Y, et al. Maturation of the neonatal oral mucosa involves unique epithelium-microbiota interactions. Cell Host Microbe. 2021;29(2):197-209.e5. https://doi.org/10.1016/j.chom.2020.12.006.

    Article  CAS  PubMed  Google Scholar 

  22. Lin D, Yang L, Wen L, et al. Crosstalk between the oral microbiota, mucosal immunity, and the epithelial barrier regulates oral mucosal disease pathogenesis. Mucosal Immunol. 2021;14(6):1247–58. https://doi.org/10.1038/s41385-021-00413-7.

    Article  CAS  PubMed  Google Scholar 

  23. Tsukasaki M, Komatsu N, Nagashima K, et al. Host defense against oral microbiota by bone-damaging T cells. Nat Commun. 2018;9(1):701. https://doi.org/10.1038/s41467-018-03147-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fleming C, Cai Y, Sun X, et al. Microbiota-activated CD103(+) DCs stemming from microbiota adaptation specifically drive γδT17 proliferation and activation. Microbiome. 2017;5(1):46. https://doi.org/10.1186/s40168-017-0263-9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Papotto PH, Yilmaz B, Silva-Santos B. Crosstalk between γδ T cells and the microbiota. Nat Microbiol. 2021;6(9):1110–7. https://doi.org/10.1038/s41564-021-00948-2.

    Article  CAS  PubMed  Google Scholar 

  26. Lin D, Hu Q, Yang L, et al. The niche-specialist and age-related oral microbial ecosystem: crosstalk with host immune cells in homeostasis. Microb Genom. 2022. https://doi.org/10.1099/mgen.0.000811.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wilharm A, Tabib Y, Nassar M, et al. Mutual interplay between IL-17-producing γδT cells and microbiota orchestrates oral mucosal homeostasis. Proc Natl Acad Sci U S A. 2019;116(7):2652–61. https://doi.org/10.1073/pnas.1818812116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gober HJ, Kistowska M, Angman L, et al. Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med. 2003;197(2):163–8. https://doi.org/10.1084/jem.20021500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang X, Lin X, Zheng Z, et al. Host-derived lipids orchestrate pulmonary γδ T cell response to provide early protection against influenza virus infection. Nat Commun. 2021;12(1):1914. https://doi.org/10.1038/s41467-021-22242-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gao Y, Yang W, Pan M, et al. Gamma delta T cells provide an early source of interferon gamma in tumor immunity. J Exp Med. 2003;198(3):433–42. https://doi.org/10.1084/jem.20030584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park JH, Lee HK. Function of gammadelta T cells in tumor immunology and their application to cancer therapy. Exp Mol Med. 2021;53(3):318–27. https://doi.org/10.1038/s12276-021-00576-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Couzi L, Pitard V, Sicard X, et al. Antibody-dependent anti-cytomegalovirus activity of human γδ T cells expressing CD16 (FcγRIIIa). Blood. 2012;119(6):1418–27. https://doi.org/10.1182/blood-2011-06-363655.

    Article  CAS  PubMed  Google Scholar 

  33. Yazdanifar M, Barbarito G, Bertaina A, et al. γδ T cells: the Ideal tool for cancer immunotherapy. Cells. 2020. https://doi.org/10.3390/cells9051305.

    Article  PubMed  PubMed Central  Google Scholar 

  34. McGinley AM, Edwards SC, Raverdeau M, et al. Th17 cells, γδ T cells and their interplay in EAE and multiple sclerosis. J Autoimmun. 2018. https://doi.org/10.1016/j.jaut.2018.01.001.

    Article  PubMed  Google Scholar 

  35. Petermann F, Rothhammer V, Claussen MC, et al. γδ T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity. 2010;33(3):351–63. https://doi.org/10.1016/j.immuni.2010.08.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maniar A, Zhang X, Lin W, et al. Human gammadelta T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement. Blood. 2010;116(10):1726–33. https://doi.org/10.1182/blood-2009-07-234211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sabbione F, Gabelloni ML, Ernst G, et al. Neutrophils suppress γδ T-cell function. Eur J Immunol. 2014;44(3):819–30. https://doi.org/10.1002/eji.201343664.

    Article  CAS  PubMed  Google Scholar 

  38. Münz C, Steinman RM, Fujii S. Dendritic cell maturation by innate lymphocytes: coordinated stimulation of innate and adaptive immunity. J Exp Med. 2005;202(2):203–7. https://doi.org/10.1084/jem.20050810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leslie DS, Vincent MS, Spada FM, et al. CD1-mediated gamma/delta T cell maturation of dendritic cells. J Exp Med. 2002;196(12):1575–84. https://doi.org/10.1084/jem.20021515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Conti L, Casetti R, Cardone M, et al. Reciprocal activating interaction between dendritic cells and pamidronate-stimulated gammadelta T cells: role of CD86 and inflammatory cytokines. J Immunol. 2005;174(1):252–60. https://doi.org/10.4049/jimmunol.174.1.252.

    Article  CAS  PubMed  Google Scholar 

  41. Devilder MC, Maillet S, Bouyge-Moreau I, et al. Potentiation of antigen-stimulated V gamma 9V delta 2 T cell cytokine production by immature dendritic cells (DC) and reciprocal effect on DC maturation. J Immunol. 2006;176(3):1386–93. https://doi.org/10.4049/jimmunol.176.3.1386.

    Article  CAS  PubMed  Google Scholar 

  42. Peters C, Kabelitz D, Wesch D. Regulatory functions of γδ T cells. Cell Mol Life Sci. 2018;75(12):2125–35. https://doi.org/10.1007/s00018-018-2788-x.

    Article  CAS  PubMed  Google Scholar 

  43. Rivera C. Essentials of oral cancer. Int J Clin Exp Pathol. 2015;8(9):11884–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ghantous Y, Abu EI. Global incidence and risk factors of oral cancer. Harefuah. 2017;156(10):645–9.

    PubMed  Google Scholar 

  45. Silva-Santos B, Serre K, Norell H. γδ T cells in cancer. Nat Rev Immunol. 2015;15(11):683–91. https://doi.org/10.1038/nri3904.

    Article  CAS  PubMed  Google Scholar 

  46. Lafont V, Sanchez F, Laprevotte E, et al. Plasticity of γδ t cells: impact on the anti-tumor response. Front Immunol. 2014. https://doi.org/10.3389/fimmu.2014.00622.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lo Presti E, Dieli F, Meraviglia S. Tumor-infiltrating γδ T lymphocytes: pathogenic role, clinical significance, and differential programing in the tumor microenvironment. Front Immunol. 2014. https://doi.org/10.3389/fimmu.2014.00607.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lopes N, Silva-Santos B. Functional and metabolic dichotomy of murine γδ T cell subsets in cancer immunity. Eur J Immunol. 2021;51(1):17–26. https://doi.org/10.1002/eji.201948402.

    Article  CAS  PubMed  Google Scholar 

  49. Lo Presti E, Toia F, Oieni S, et al. Squamous cell tumors recruit γδ T cells producing either IL17 or IFNγ depending on the tumor stage. Cancer Immunol Res. 2017;5(5):397–407. https://doi.org/10.1158/2326-6066.Cir-16-0348.

    Article  CAS  PubMed  Google Scholar 

  50. Wu P, Wu D, Ni C, et al. γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity. 2014;40(5):785–800. https://doi.org/10.1016/j.immuni.2014.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Girardi M, Oppenheim DE, Steele CR, et al. Regulation of cutaneous malignancy by gammadelta T cells. Science. 2001;294(5542):605–9. https://doi.org/10.1126/science.1063916.

    Article  CAS  PubMed  Google Scholar 

  52. Sureshbabu SK, Chaukar D, Chiplunkar SV. Hypoxia regulates the differentiation and anti-tumor effector functions of γδT cells in oral cancer. Clin Exp Immunol. 2020;201(1):40–57. https://doi.org/10.1111/cei.13436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Laad AD, Thomas ML, Fakih AR, et al. Human gamma delta T cells recognize heat shock protein-60 on oral tumor cells. Int J Cancer. 1999;80(5):709–14. https://doi.org/10.1002/(sici)1097-0215(19990301)80:5%3c709::aid-ijc14%3e3.0.co;2-r.

    Article  CAS  PubMed  Google Scholar 

  54. Domae E, Hirai Y, Ikeo T, et al. Human Vγ9Vδ2 T cells show potent antitumor activity against zoledronate-sensitized OSCC cell lines. J buon. 2018;23(7):132–8.

    PubMed  Google Scholar 

  55. O’neill K, Pastar I, Tomic-Canic M, et al. Perforins expression by cutaneous gamma delta T Cells. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.01839.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wakita D, Sumida K, Iwakura Y, et al. Tumor-infiltrating IL-17-producing gammadelta T cells support the progression of tumor by promoting angiogenesis. Eur J Immunol. 2010;40(7):1927–37. https://doi.org/10.1002/eji.200940157.

    Article  CAS  PubMed  Google Scholar 

  57. Wei W, Li J, Shen X, et al. (2022) Oral microbiota from periodontitis promote oral squamous cell carcinoma development via γδ T cell activation. Systems. 2022;7(5):e0046922. https://doi.org/10.1128/msystems.00469-22.

    Article  CAS  Google Scholar 

  58. Li L, Cao B, Liang X, et al. Microenvironmental oxygen pressure orchestrates an anti- and pro-tumoral γδ T cell equilibrium via tumor-derived exosomes. Oncogene. 2019;38(15):2830–43. https://doi.org/10.1038/s41388-018-0627-z.

    Article  CAS  PubMed  Google Scholar 

  59. Atre N, Thomas L, Mistry R, et al. Role of nitric oxide in heat shock protein induced apoptosis of gammadeltaT cells. Int J Cancer. 2006;119(6):1368–76. https://doi.org/10.1002/ijc.21966.

    Article  CAS  PubMed  Google Scholar 

  60. Mensurado S, Blanco-Domínguez R, Silva-Santos B. The emerging roles of γδ T cells in cancer immunotherapy. Nat Rev Clin Oncol. 2023;20(3):178–91. https://doi.org/10.1038/s41571-022-00722-1.

    Article  CAS  PubMed  Google Scholar 

  61. Mensurado S, Blanco-Domínguez R, Silva-Santos B. The emerging roles of γδ T cells in cancer immunotherapy. Nat Rev Clin Oncol. 2023. https://doi.org/10.1038/s41571-022-00722-1.

    Article  PubMed  Google Scholar 

  62. Deng J, Yin H. Gamma delta (γδ) T cells in cancer immunotherapy; where it comes from, where it will go? Eur J Pharmacol. 2022. https://doi.org/10.1016/j.ejphar.2022.174803.

    Article  PubMed  Google Scholar 

  63. Kabelitz D, Serrano R, Kouakanou L, et al. Cancer immunotherapy with γδ T cells: many paths ahead of us. Cell Mol Immunol. 2020;17(9):925–39. https://doi.org/10.1038/s41423-020-0504-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ou L, Wang H, Huang H, et al. Preclinical platforms to study therapeutic efficacy of human γδ T cells. Clin Transl Med. 2022;12(6):e814. https://doi.org/10.1002/ctm2.814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Silva-Santos B, Mensurado S, Coffelt SB. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat Rev Cancer. 2019;19(7):392–404. https://doi.org/10.1038/s41568-019-0153-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bhat J, Placek K, Faissner S. Contemplating dichotomous nature of gamma delta T cells for immunotherapy. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2022.894580.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017. https://doi.org/10.1038/nrdp.2017.38.

    Article  PubMed  Google Scholar 

  68. Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15(1):30–44. https://doi.org/10.1038/nri3785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nielsen MM, Witherden DA, Havran WL. γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat Rev Immunol. 2017;17(12):733–45. https://doi.org/10.1038/nri.2017.101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wald S, Leibowitz A, Aizenbud Y, et al. γδT cells are essential for orthodontic tooth movement. J Dent Res. 2021;100(7):731–8. https://doi.org/10.1177/0022034520984774.

    Article  CAS  PubMed  Google Scholar 

  71. Nagai A, Takahashi K, Sato N, et al. Abnormal proportion of gamma delta T cells in peripheral blood is frequently detected in patients with periodontal disease. J Periodontol. 1993;64(10):963–7. https://doi.org/10.1902/jop.1993.64.10.963.

    Article  CAS  PubMed  Google Scholar 

  72. Chien YH, Zeng X, Prinz I. The natural and the inducible: interleukin (IL)-17-producing γδ T cells. Trends Immunol. 2013;34(4):151–4. https://doi.org/10.1016/j.it.2012.11.004.

    Article  CAS  PubMed  Google Scholar 

  73. Yu JJ, Ruddy MJ, Wong GC, et al. An essential role for IL-17 in preventing pathogen-initiated bone destruction: recruitment of neutrophils to inflamed bone requires IL-17 receptor-dependent signals. Blood. 2007;109(9):3794–802. https://doi.org/10.1182/blood-2005-09-010116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ono T, Okamoto K, Nakashima T, et al. IL-17-producing γδ T cells enhance bone regeneration. Nat Commun. 2016. https://doi.org/10.1038/ncomms10928.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Awang RA, Lappin DF, Macpherson A, et al. Clinical associations between IL-17 family cytokines and periodontitis and potential differential roles for IL-17A and IL-17E in periodontal immunity. Inflamm Res. 2014;63(12):1001–12. https://doi.org/10.1007/s00011-014-0776-7.

    Article  CAS  PubMed  Google Scholar 

  76. Bunte K, Beikler T. Th17 cells and the IL-23/IL-17 axis in the pathogenesis of periodontitis and immune-mediated inflammatory diseases. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20143394.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Krishnan S, Prise IE, Wemyss K, et al. Amphiregulin-producing γδ T cells are vital for safeguarding oral barrier immune homeostasis. Proc Natl Acad Sci U S A. 2018;115(42):10738–43. https://doi.org/10.1073/pnas.1802320115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hovav AH, Wilharm A, Barel O, et al. Development and function of γδT cells in the oral mucosa. J Dent Res. 2020;99(5):498–505. https://doi.org/10.1177/0022034520908839.

    Article  CAS  PubMed  Google Scholar 

  79. Barel O, Aizenbud Y, Tabib Y, et al. γδ T cells differentially regulate bone loss in periodontitis models. J Dent Res. 2022;101(4):428–36. https://doi.org/10.1177/00220345211042830.

    Article  CAS  PubMed  Google Scholar 

  80. Sandrock I, Reinhardt A, Ravens S, et al. Genetic models reveal origin, persistence and non-redundant functions of IL-17-producing γδ T cells. J Exp Med. 2018;215(12):3006–18. https://doi.org/10.1084/jem.20181439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Treister N, Duncan C, Cutler C, et al. How we treat oral chronic graft-versus-host disease. Blood. 2012;120(17):3407–18. https://doi.org/10.1182/blood-2012-05-393389.

    Article  CAS  PubMed  Google Scholar 

  82. Bassim CW, Fassil H, Mays JW, et al. Oral disease profiles in chronic graft versus host disease. J Dent Res. 2015;94(4):547–54. https://doi.org/10.1177/0022034515570942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Blazar BR, Murphy WJ, Abedi M. Advances in graft-versus-host disease biology and therapy. Nat Rev Immunol. 2012;12(6):443–58. https://doi.org/10.1038/nri3212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jagasia MH, Greinix HT, Arora M, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease I. The 2014 Diagnosis and Staging Working Group report. Biol Blood Marrow Transplant. 2015;21(3):389-401.e1. https://doi.org/10.1016/j.bbmt.2014.12.001.

    Article  PubMed  Google Scholar 

  85. Pabst C, Schirutschke H, Ehninger G, et al. The graft content of donor T cells expressing gamma delta TCR+ and CD4+foxp3+ predicts the risk of acute graft versus host disease after transplantation of allogeneic peripheral blood stem cells from unrelated donors. Clin Cancer Res. 2007;13(10):2916–22. https://doi.org/10.1158/1078-0432.Ccr-06-2602.

    Article  CAS  PubMed  Google Scholar 

  86. Blazar BR, Taylor PA, Panoskaltsis-Mortari A, et al. Lethal murine graft-versus-host disease induced by donor gamma/delta expressing T cells with specificity for host nonclassical major histocompatibility complex class Ib antigens. Blood. 1996;87(2):827–37.

    Article  CAS  PubMed  Google Scholar 

  87. Huang Y, Cramer DE, Ray MB, et al. The role of alphabeta- and gammadelta-T cells in allogenic donor marrow on engraftment, chimerism, and graft-versus-host disease. Transplantation. 2001;72(12):1907–14. https://doi.org/10.1097/00007890-200112270-00007.

    Article  CAS  PubMed  Google Scholar 

  88. Wu N, Liu R, Liang S, et al. γδ T cells may aggravate acute graft-versus-host disease through CXCR4 signaling after allogeneic hematopoietic transplantation. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.687961.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Song Y, Zhu Y, Hu B, et al. Donor γδT cells promote GVL effect and mitigate aGVHD in allogeneic hematopoietic stem cell transplantation. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.558143.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Drobyski WR, Majewski D, Hanson G (199) Graft-facilitating doses of ex vivo activated gammadelta T cells do not cause lethal murine graft-vs-host disease. Biol Blood Marrow Transplant 5(4): 222–30. https://doi.org/10.1053/bbmt.1999.v5.pm10465102

  91. Kawasaki Y, Sato K, Hayakawa H, et al. Comprehensive analysis of the activation and proliferation kinetics and effector functions of human lymphocytes, and antigen presentation capacity of antigen-presenting cells in xenogeneic graft-versus-host disease. Biol Blood Marrow Transplant. 2018;24(8):1563–74. https://doi.org/10.1016/j.bbmt.2018.04.016.

    Article  CAS  PubMed  Google Scholar 

  92. Drobyski WR, Majewski D. Donor gamma delta T lymphocytes promote allogeneic engraftment across the major histocompatibility barrier in mice. Blood. 1997;89(3):1100–9.

    Article  CAS  PubMed  Google Scholar 

  93. Maeda Y, Reddy P, Lowler KP, et al. Critical role of host gammadelta T cells in experimental acute graft-versus-host disease. Blood. 2005;106(2):749–55. https://doi.org/10.1182/blood-2004-10-4087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Anderson BE, McNiff JM, Matte C, et al. Recipient CD4+ T cells that survive irradiation regulate chronic graft-versus-host disease. Blood. 2004;104(5):1565–73. https://doi.org/10.1182/blood-2004-01-0328.

    Article  CAS  PubMed  Google Scholar 

  95. Cai Y, Shen X, Ding C, et al. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity. 2011;35(4):596–610. https://doi.org/10.1016/j.immuni.2011.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ramírez-Valle F, Gray EE, Cyster JG. Inflammation induces dermal Vγ4+ γδT17 memory-like cells that travel to distant skin and accelerate secondary IL-17-driven responses. Proc Natl Acad Sci U S A. 2015;112(26):8046–51. https://doi.org/10.1073/pnas.1508990112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wu M, Yang J, Li X, et al. The role of γδ T cells in systemic lupus erythematosus. J Immunol Res. 2016. https://doi.org/10.1155/2016/2932531.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bramanti TE, Dekker NP, Lozada-Nur F, et al. Heat shock (stress) proteins and gamma delta T lymphocytes in oral lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;80(6):698–704. https://doi.org/10.1016/s1079-2104(05)80254-9.

    Article  CAS  PubMed  Google Scholar 

  99. Huang S, Tan YQ, Zhou G. Aberrant activation of the STING-TBK1 Pathway in γδ T cells regulates immune responses in oral lichen planus. Biomedicines. 2023. https://doi.org/10.3390/biomedicines11030955.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yang JY, Wang F, Zhou G. Characterization and function of circulating mucosal-associated invariant T cells and γδT cells in oral lichen planus. J Oral Pathol Med. 2022;51(1):74–85. https://doi.org/10.1111/jop.13250.

    Article  CAS  PubMed  Google Scholar 

  101. Husein-Elahmed H, Steinhoff M. Potential role of Interleukin-17 in the pathogenesis of oral lichen planus: a systematic review with meta-analysis. J Eur Acad Dermatol Venereol. 2022;36(10):1735–44. https://doi.org/10.1111/jdv.18219.

    Article  CAS  PubMed  Google Scholar 

  102. Shao S, Tsoi LC, Sarkar MK, et al. IFN-γ enhances cell-mediated cytotoxicity against keratinocytes via JAK2/STAT1 in lichen planus. Sci Transl Med. 2019. https://doi.org/10.1126/scitranslmed.aav7561.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Jones-Carson J, Vazquez-Torres A, van der Heyde HC, et al. Gamma delta T cell-induced nitric oxide production enhances resistance to mucosal candidiasis. Nat Med. 1995;1(6):552–7. https://doi.org/10.1038/nm0695-552.

    Article  CAS  PubMed  Google Scholar 

  104. Pavlova A, Sharafutdinov I. Recognition of Candida albicans and role of innate type 17 immunity in oral candidiasis. Microorganisms. 2020. https://doi.org/10.3390/microorganisms8091340.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Conti HR, Shen F, Nayyar N, et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med. 2009;206(2):299–311. https://doi.org/10.1084/jem.20081463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Conti HR, Bruno VM, Childs EE, et al. IL-17 receptor signaling in oral epithelial cells is critical for protection against oropharyngeal candidiasis. Cell Host Microbe. 2016;20(5):606–17. https://doi.org/10.1016/j.chom.2016.10.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sparber F, Dolowschiak T, Mertens S, et al. Langerin+ DCs regulate innate IL-17 production in the oral mucosa during Candida albicans-mediated infection. PLoS Pathog. 2018;14(5):e1007069. https://doi.org/10.1371/journal.ppat.1007069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Conti HR, Peterson AC, Brane L, et al. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections. J Exp Med. 2014;211(10):2075–84. https://doi.org/10.1084/jem.20130877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Martin B, Hirota K, Cua DJ, et al. Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity. 2009;31(2):321–30. https://doi.org/10.1016/j.immuni.2009.06.020.

    Article  CAS  PubMed  Google Scholar 

  110. Maher CO, Dunne K, Comerford R, et al. Candida albicans stimulates IL-23 release by human dendritic cells and downstream IL-17 secretion by Vδ1 T cells. J Immunol. 2015;194(12):5953–60. https://doi.org/10.4049/jimmunol.1403066.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (Nos. 82201068 and 82270983).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. XW was involved in writing—original draft preparation. YT and GZ reviewed and edited the manuscript. All authors gave their approval for the final manuscript to be published.

Corresponding authors

Correspondence to Ya-Qin Tan or Gang Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, XY., Tan, YQ. & Zhou, G. γδ T cells in oral diseases. Inflamm. Res. 73, 867–876 (2024). https://doi.org/10.1007/s00011-024-01870-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-024-01870-z

Keywords

Navigation