Skip to main content

Advertisement

Log in

Mucosa-associated invariant T cells in malignancies: a faithful friend or formidable foe?

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Mucosa-associated invariant T (MAIT) cells are a subset of innate-like T lymphocytes known for their ability to respond to MHC-related protein 1 (MR1)-restricted stimuli and select cytokine signals. They are abundant in humans and especially enriched in mucosal layers, common sites of neoplastic transformation. MAIT cells have been found within primary and metastatic tumors. However, whether they promote malignancy or contribute to anticancer immunity is unclear. On the one hand, MAIT cells produce IL-17A in certain locations and under certain circumstances, which could in turn facilitate neoangiogenesis, intratumoral accumulation of immunosuppressive cell populations, and cancer progression. On the other hand, they can express a potent arsenal of cytotoxic effector molecules, NKG2D and IFN-γ, all of which have established roles in cancer immune surveillance. In this review, we highlight MAIT cells’ characteristics as they might pertain to cancer initiation, progression, or control. We discuss recent findings, including our own, that link MAIT cells to cancer, with a focus on colorectal carcinoma, as well as some of the outstanding questions in this active area of research. Finally, we provide a hypothetical picture in which MAIT cells constitute attractive targets in cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cell-mediated cytotoxicity

Apc :

Adenomatous polyposis coli

Bcl-2:

B-cell lymphoma 2

CCL:

C-C chemokine [ligand]

CCR:

C-C chemokine receptor

CEA:

Carcinoembryonic antigen

CRC:

Colorectal carcinoma

CRLM:

Colorectal liver metastasis

CXCL:

C-X-C chemokine [ligand]

CXCR:

C-X-C chemokine receptor

ERK:

Extracellular signal-regulated kinase

FOLFOX:

Leucovorin Calcium (Folinic Acid)/5-Fluorouracil/Oxaliplatin

GZM:

Granzyme

IBD:

Inflammatory bowel disease

IL-17RA:

IL-17 receptor A

iNKT:

Invariant natural killer T [cell]

IP-10:

IFN-γ-inducible protein of 10 kDa

iTCRα:

Invariant TCR α [chain]

iVα19 tg:

Invariant Vα19 TCR transgenic [mice]

JNK:

c-Jun N-terminal kinase

LAG-3:

Lymphocyte-activation gene 3

MAIT:

Mucosa-associated invariant T [cell]

MDR1:

Multi-drug resistance protein 1

MIC:

MHC class I polypeptide-related sequence

MIG:

Monokine induced by gamma interferon

MMP:

Matrix metalloproteinase

MR1:

MHC-related protein 1

NKG2D:

Natural-killer group 2, member D

PGE2 :

Prostaglandin E2

RORC:

RAR related orphan receptor C

SEB:

Staphylococcal enterotoxin B

TH1:

T helper 1

TH17:

T helper 17

TIM-3:

T cell immunoglobulin and mucin-3

TME(s):

Tumor microenvironment(s)

TRAJ:

T cell receptor alpha joining

TRAV:

T cell receptor alpha variable

ULBP/RAET:

UL16-binding protein/retinoic acid early transcript

VEGF:

Vascular endothelial growth factor

References

  1. Porcelli S, Yockey CE, Brenner MB, Balk SP (1993) Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med 178(1):1–16

    Article  CAS  PubMed  Google Scholar 

  2. Lantz O, Bendelac A (1994) An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4 + and CD4-8- T cells in mice and humans. J Exp Med 180(3):1097–1106

    Article  CAS  PubMed  Google Scholar 

  3. Tilloy F, Treiner E, Park SH, Garcia C, Lemonnier F, de la Salle H, Bendelac A, Bonneville M, Lantz O (1999) An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J Exp Med 189(12):1907–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O (2003) Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422(6928):164–169. https://doi.org/10.1038/nature01433

    Article  CAS  PubMed  Google Scholar 

  5. Yamaguchi H, Hirai M, Kurosawa Y, Hashimoto K (1997) A highly conserved major histocompatibility complex class I-related gene in mammals. Biochem Biophys Res Commun 238(3):697–702. https://doi.org/10.1006/bbrc.1997.7379

    Article  CAS  PubMed  Google Scholar 

  6. Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O’Hair RA, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491(7426):717–723. https://doi.org/10.1038/nature11605

    Article  CAS  PubMed  Google Scholar 

  7. Seach N, Guerri L, Le Bourhis L, Mburu Y, Cui Y, Bessoles S, Soudais C, Lantz O (2013) Double-positive thymocytes select mucosal-associated invariant T cells. J Immunol 191(12):6002–6009. https://doi.org/10.4049/jimmunol.1301212

    Article  CAS  PubMed  Google Scholar 

  8. Koay HF, Gherardin NA, Enders A, Loh L, Mackay LK, Almeida CF, Russ BE, Nold-Petry CA, Nold MF, Bedoui S, Chen Z, Corbett AJ, Eckle SB, Meehan B, d’Udekem Y, Konstantinov IE, Lappas M, Liu L, Goodnow CC, Fairlie DP, Rossjohn J, Chong MM, Kedzierska K, Berzins SP, Belz GT, McCluskey J, Uldrich AP, Godfrey DI, Pellicci DG (2016) A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat Immunol 17(11):1300–1311. https://doi.org/10.1038/ni.3565

    Article  CAS  PubMed  Google Scholar 

  9. Dusseaux M, Martin E, Serriari N, Peguillet I, Premel V, Louis D, Milder M, Le Bourhis L, Soudais C, Treiner E, Lantz O (2011) Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117(4):1250–1259. https://doi.org/10.1182/blood-2010-08-303339

    Article  CAS  PubMed  Google Scholar 

  10. Tang XZ, Jo J, Tan AT, Sandalova E, Chia A, Tan KC, Lee KH, Gehring AJ, De Libero G, Bertoletti A (2013) IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J Immunol 190(7):3142–3152. https://doi.org/10.4049/jimmunol.1203218

    Article  CAS  PubMed  Google Scholar 

  11. Rahimpour A, Koay HF, Enders A, Clanchy R, Eckle SB, Meehan B, Chen Z, Whittle B, Liu L, Fairlie DP, Goodnow CC, McCluskey J, Rossjohn J, Uldrich AP, Pellicci DG, Godfrey DI (2015) Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J Exp Med 212(7):1095–1108. https://doi.org/10.1084/jem.20142110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reantragoon R, Corbett AJ, Sakala IG, Gherardin NA, Furness JB, Chen Z, Eckle SB, Uldrich AP, Birkinshaw RW, Patel O, Kostenko L, Meehan B, Kedzierska K, Liu L, Fairlie DP, Hansen TH, Godfrey DI, Rossjohn J, McCluskey J, Kjer-Nielsen L (2013) Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J Exp Med 210(11):2305–2320. https://doi.org/10.1084/jem.20130958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Corbett AJ, Eckle SB, Birkinshaw RW, Liu L, Patel O, Mahony J, Chen Z, Reantragoon R, Meehan B, Cao H, Williamson NA, Strugnell RA, Van Sinderen D, Mak JY, Fairlie DP, Kjer-Nielsen L, Rossjohn J, McCluskey J (2014) T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509(7500):361–365. https://doi.org/10.1038/nature13160

    Article  CAS  PubMed  Google Scholar 

  14. Ussher JE, Bilton M, Attwod E, Shadwell J, Richardson R, de Lara C, Mettke E, Kurioka A, Hansen TH, Klenerman P, Willberg CB (2014) CD161 + + CD8 + T cells, including the MAIT cell subset, are specifically activated by IL-12 + IL-18 in a TCR-independent manner. Eur J Immunol 44(1):195–203. https://doi.org/10.1002/eji.201343509

    Article  CAS  PubMed  Google Scholar 

  15. Salou M, Franciszkiewicz K, Lantz O (2017) MAIT cells in infectious diseases. Curr Opin Immunol 48:7–14. https://doi.org/10.1016/j.coi.2017.07.009

    Article  CAS  PubMed  Google Scholar 

  16. van Wilgenburg B, Scherwitzl I, Hutchinson EC, Leng T, Kurioka A, Kulicke C, de Lara C, Cole S, Vasanawathana S, Limpitikul W, Malasit P, Young D, Denney L, consortium S-H, Moore, Fabris MD, Giordani P, Oo MT, Laidlaw YH, Dustin SM, Ho LB, Thompson LP, Ramamurthy FM, Mongkolsapaya N, Willberg J, Screaton CB, Klenerman GR P (2016) MAIT cells are activated during human viral infections. Nat Commun 7:11653. https://doi.org/10.1038/ncomms11653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Loh L, Wang Z, Sant S, Koutsakos M, Jegaskanda S, Corbett AJ, Liu L, Fairlie DP, Crowe J, Rossjohn J, Xu J, Doherty PC, McCluskey J, Kedzierska K (2016) Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-dependent activation. Proc Natl Acad Sci USA 113(36):10133–10138. https://doi.org/10.1073/pnas.1610750113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sattler A, Dang-Heine C, Reinke P, Babel N (2015) IL-15 dependent induction of IL-18 secretion as a feedback mechanism controlling human MAIT-cell effector functions. Eur J Immunol 45(8):2286–2298. https://doi.org/10.1002/eji.201445313

    Article  CAS  PubMed  Google Scholar 

  19. Leeansyah E, Svard J, Dias J, Buggert M, Nystrom J, Quigley MF, Moll M, Sonnerborg A, Nowak P, Sandberg JK (2015) Arming of MAIT cell cytolytic antimicrobial activity is induced by IL-7 and defective in HIV-1 infection. PLoS Pathog 11(8):e1005072. https://doi.org/10.1371/journal.ppat.1005072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Spaan M, Hullegie SJ, Beudeker BJ, Kreefft K, van Oord GW, Groothuismink ZM, van Tilborg M, Rijnders B, de Knegt RJ, Claassen MA, Boonstra A (2016) Frequencies of circulating MAIT Cells are diminished in chronic HCV, HIV and HCV/HIV co-infection and do not recover during therapy. PLoS ONE 11(7):e0159243. https://doi.org/10.1371/journal.pone.0159243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shaler CR, Choi J, Rudak PT, Memarnejadian A, Szabo PA, Tun-Abraham ME, Rossjohn J, Corbett AJ, McCluskey J, McCormick JK, Lantz O, Hernandez-Alejandro R, Haeryfar SMM (2017) MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: defining a novel mechanism of superantigen-induced immunopathology and immunosuppression. PLoS Biol 15(6):e2001930. https://doi.org/10.1371/journal.pbio.2001930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, Winata E, Swarbrick GM, Chua WJ, Yu YY, Lantz O, Cook MS, Null MD, Jacoby DB, Harriff MJ, Lewinsohn DA, Hansen TH, Lewinsohn DM (2010) Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol 8(6):e1000407. https://doi.org/10.1371/journal.pbio.1000407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Le Bourhis L, Dusseaux M, Bohineust A, Bessoles S, Martin E, Premel V, Core M, Sleurs D, Serriari NE, Treiner E, Hivroz C, Sansonetti P, Gougeon ML, Soudais C, Lantz O (2013) MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog 9(10):e1003681. https://doi.org/10.1371/journal.ppat.1003681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kurioka A, Ussher JE, Cosgrove C, Clough C, Fergusson JR, Smith K, Kang YH, Walker LJ, Hansen TH, Willberg CB, Klenerman P (2015) MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol 8(2):429–440. https://doi.org/10.1038/mi.2014.81

    Article  CAS  PubMed  Google Scholar 

  25. Dias J, Leeansyah E, Sandberg JK (2017) Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc Natl Acad Sci USA 114(27):E5434–E5443. https://doi.org/10.1073/pnas.1705759114

    Article  CAS  Google Scholar 

  26. Magalhaes I, Pingris K, Poitou C, Bessoles S, Venteclef N, Kiaf B, Beaudoin L, Da Silva J, Allatif O, Rossjohn J, Kjer-Nielsen L, McCluskey J, Ledoux S, Genser L, Torcivia A, Soudais C, Lantz O, Boitard C, Aron-Wisnewsky J, Larger E, Clement K, Lehuen A (2015) Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J Clin Invest 125(4):1752–1762. https://doi.org/10.1172/JCI78941

    Article  PubMed  PubMed Central  Google Scholar 

  27. Carolan E, Tobin LM, Mangan BA, Corrigan M, Gaoatswe G, Byrne G, Geoghegan J, Cody D, O’Connell J, Winter DC, Doherty DG, Lynch L, O’Shea D, Hogan AE (2015) Altered distribution and increased IL-17 production by mucosal-associated invariant T cells in adult and childhood obesity. J Immunol 194(12):5775–5780. https://doi.org/10.4049/jimmunol.1402945

    Article  CAS  PubMed  Google Scholar 

  28. Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pages F, Galon J (2011) Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res 71(4):1263–1271. https://doi.org/10.1158/0008-5472.CAN-10-2907

    Article  CAS  PubMed  Google Scholar 

  29. Liu J, Duan Y, Cheng X, Chen X, Xie W, Long H, Lin Z, Zhu B (2011) IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun 407(2):348–354. https://doi.org/10.1016/j.bbrc.2011.03.021

    Article  CAS  PubMed  Google Scholar 

  30. Li Q, Han Y, Fei G, Guo Z, Ren T, Liu Z (2012) IL-17 promoted metastasis of non-small-cell lung cancer cells. Immunol Lett 148(2):144–150. https://doi.org/10.1016/j.imlet.2012.10.011

    Article  CAS  PubMed  Google Scholar 

  31. Zhong F, Cui D, Tao H, Du H, Xing C (2015) IL-17A-producing T cells and associated cytokines are involved in the progression of gastric cancer. Oncol Rep 34(5):2365–2374. https://doi.org/10.3892/or.2015.4246

    Article  CAS  PubMed  Google Scholar 

  32. Madkouri R, Kaderbhai CG, Bertaut A, Truntzer C, Vincent J, Aubriot-Lorton MH, Farah W, Limagne E, Ladoire S, Boidot R, Derangere V, Ghiringhelli F (2017) Immune classifications with cytotoxic CD8(+) and Th17 infiltrates are predictors of clinical prognosis in glioblastoma. Oncoimmunology 6(6):e1321186. https://doi.org/10.1080/2162402X.2017.1321186

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xie Z, Qu Y, Leng Y, Sun W, Ma S, Wei J, Hu J, Zhang X (2015) Human colon carcinogenesis is associated with increased interleukin-17-driven inflammatory responses. Drug Des Devel Ther 9:1679–1689. https://doi.org/10.2147/DDDT.S79431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Numasaki M, Lotze MT, Sasaki H (2004) Interleukin-17 augments tumor necrosis factor-alpha-induced elaboration of proangiogenic factors from fibroblasts. Immunol Lett 93(1):39–43. https://doi.org/10.1016/j.imlet.2004.01.014

    Article  CAS  PubMed  Google Scholar 

  35. Takahashi H, Numasaki M, Lotze MT, Sasaki H (2005) Interleukin-17 enhances bFGF-, HGF- and VEGF-induced growth of vascular endothelial cells. Immunol Lett 98(2):189–193. https://doi.org/10.1016/j.imlet.2004.11.012

    Article  CAS  PubMed  Google Scholar 

  36. Huang Q, Duan L, Qian X, Fan J, Lv Z, Zhang X, Han J, Wu F, Guo M, Hu G, Du J, Chen C, Jin Y (2016) IL-17 promotes angiogenic factors IL-6, IL-8, and Vegf production via Stat1 in lung adenocarcinoma. Sci Rep 6:36551. https://doi.org/10.1038/srep36551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kulig P, Burkhard S, Mikita-Geoffroy J, Croxford AL, Hovelmeyer N, Gyulveszi G, Gorzelanny C, Waisman A, Borsig L, Becher B (2016) IL17A-mediated endothelial breach promotes metastasis formation. Cancer Immunol Res 4(1):26–32. https://doi.org/10.1158/2326-6066.CIR-15-0154

    Article  CAS  PubMed  Google Scholar 

  38. Wu P, Wu D, Ni C, Ye J, Chen W, Hu G, Wang Z, Wang C, Zhang Z, Xia W, Chen Z, Wang K, Zhang T, Xu J, Han Y, Zhang T, Wu X, Wang J, Gong W, Zheng S, Qiu F, Yan J, Huang J (2014) gammadeltaT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 40(5):785–800. https://doi.org/10.1016/j.immuni.2014.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu G, Wu P, Cheng P, Zhang Z, Wang Z, Yu X, Shao X, Wu D, Ye J, Zhang T, Wang X, Qiu F, Yan J, Huang J (2017) Tumor-infiltrating CD39(+)gammadeltaTregs are novel immunosuppressive T cells in human colorectal cancer. Oncoimmunology 6(2):e1277305. https://doi.org/10.1080/2162402X.2016.1277305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu L, Ge D, Ma L, Mei J, Liu S, Zhang Q, Ren F, Liao H, Pu Q, Wang T, You Z (2012) Interleukin-17 and prostaglandin E2 are involved in formation of an M2 macrophage-dominant microenvironment in lung cancer. J Thorac Oncol 7(7):1091–1100. https://doi.org/10.1097/JTO.0b013e3182542752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li Q, Liu L, Zhang Q, Liu S, Ge D, You Z (2014) Interleukin-17 indirectly promotes M2 macrophage differentiation through stimulation of COX-2/PGE2 pathway in the cancer cells. Cancer Res Treat 46(3):297–306. https://doi.org/10.4143/crt.2014.46.3.297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peterfalvi A, Gomori E, Magyarlaki T, Pal J, Banati M, Javorhazy A, Szekeres-Bartho J, Szereday L, Illes Z (2008) Invariant Valpha7.2-Jalpha33 TCR is expressed in human kidney and brain tumors indicating infiltration by mucosal-associated invariant T (MAIT) cells. Int Immunol 20(12):1517–1525. https://doi.org/10.1093/intimm/dxn111

    Article  CAS  PubMed  Google Scholar 

  43. Sundstrom P, Ahlmanner F, Akeus P, Sundquist M, Alsen S, Yrlid U, Borjesson L, Sjoling A, Gustavsson B, Wong SB, Quiding-Jarbrink M (2015) Human mucosa-associated invariant T cells accumulate in colon adenocarcinomas but produce reduced amounts of IFN-gamma. J Immunol 195(7):3472–3481. https://doi.org/10.4049/jimmunol.1500258

    Article  CAS  PubMed  Google Scholar 

  44. Zabijak L, Attencourt C, Guignant C, Chatelain D, Marcelo P, Marolleau JP, Treiner E (2015) Increased tumor infiltration by mucosal-associated invariant T cells correlates with poor survival in colorectal cancer patients. Cancer Immunol Immunother 64(12):1601–1608. https://doi.org/10.1007/s00262-015-1764-7

    Article  CAS  PubMed  Google Scholar 

  45. Ling L, Lin Y, Zheng W, Hong S, Tang X, Zhao P, Li M, Ni J, Li C, Wang L, Jiang Y (2016) Circulating and tumor-infiltrating mucosal associated invariant T (MAIT) cells in colorectal cancer patients. Sci Rep 6:20358. https://doi.org/10.1038/srep20358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Won EJ, Ju JK, Cho YN, Jin HM, Park KJ, Kim TJ, Kwon YS, Kee HJ, Kim JC, Kee SJ, Park YW (2016) Clinical relevance of circulating mucosal-associated invariant T cell levels and their anti-cancer activity in patients with mucosal-associated cancer. Oncotarget 7(46):76274–76290. https://doi.org/10.18632/oncotarget.11187

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shaler CR, Tun-Abraham ME, Skaro AI, Khazaie K, Corbett AJ, Mele T, Hernandez-Alejandro R, Haeryfar SMM (2017) Mucosa-associated invariant T cells infiltrate hepatic metastases in patients with colorectal carcinoma but are rendered dysfunctional within and adjacent to tumor microenvironment. Cancer Immunol Immunother 66(12):1563–1575. https://doi.org/10.1007/s00262-017-2050-7

    Article  CAS  PubMed  Google Scholar 

  48. Serriari NE, Eoche M, Lamotte L, Lion J, Fumery M, Marcelo P, Chatelain D, Barre A, Nguyen-Khac E, Lantz O, Dupas JL, Treiner E (2014) Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases. Clin Exp Immunol 176(2):266–274. https://doi.org/10.1111/cei.12277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Haga K, Chiba A, Shibuya T, Osada T, Ishikawa D, Kodani T, Nomura O, Watanabe S, Miyake S (2016) MAIT cells are activated and accumulated in the inflamed mucosa of ulcerative colitis. J Gastroenterol Hepatol 31(5):965–972. https://doi.org/10.1111/jgh.13242

    Article  CAS  PubMed  Google Scholar 

  50. Chehimi M, Vidal H, Eljaafari A (2017) Pathogenic role of IL-17-producing immune cells in obesity, and related inflammatory diseases. J Clin Med 6 (7). https://doi.org/10.3390/jcm6070068

    Article  PubMed Central  Google Scholar 

  51. Slattery ML, Lundgreen A, Bondurant KL, Wolff RK (2011) Interferon-signaling pathway: associations with colon and rectal cancer risk and subsequent survival. Carcinogenesis 32(11):1660–1667. https://doi.org/10.1093/carcin/bgr189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lu S, Pardini B, Cheng B, Naccarati A, Huhn S, Vymetalkova V, Vodickova L, Buchler T, Hemminki K, Vodicka P, Forsti A (2014) Single nucleotide polymorphisms within interferon signaling pathway genes are associated with colorectal cancer susceptibility and survival. PLoS ONE 9(10):e111061. https://doi.org/10.1371/journal.pone.0111061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang L, Wang Y, Song Z, Chu J, Qu X (2015) Deficiency of interferon-gamma or its receptor promotes colorectal cancer development. J Interferon Cytokine Res 35(4):273–280. https://doi.org/10.1089/jir.2014.0132

    Article  CAS  PubMed  Google Scholar 

  54. Yuan L, Zhou C, Lu Y, Hong M, Zhang Z, Zhang Z, Chang Y, Zhang C, Li X (2015) IFN-gamma-mediated IRF1/miR-29b feedback loop suppresses colorectal cancer cell growth and metastasis by repressing IGF1. Cancer Lett 359(1):136–147. https://doi.org/10.1016/j.canlet.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  55. Reeves E, James E (2017) Antigen processing and immune regulation in the response to tumours. Immunology 150(1):16–24. https://doi.org/10.1111/imm.12675

    Article  CAS  PubMed  Google Scholar 

  56. Chen W, Masterman KA, Basta S, Haeryfar SM, Dimopoulos N, Knowles B, Bennink JR, Yewdell JW (2004) Cross-priming of CD8 + T cells by viral and tumor antigens is a robust phenomenon. Eur J Immunol 34(1):194–199. https://doi.org/10.1002/eji.200324257

    Article  CAS  PubMed  Google Scholar 

  57. Deauvieau F, Ollion V, Doffin AC, Achard C, Fonteneau JF, Verronese E, Durand I, Ghittoni R, Marvel J, Dezutter-Dambuyant C, Walzer T, Vie H, Perrot I, Goutagny N, Caux C, Valladeau-Guilemond J (2015) Human natural killer cells promote cross-presentation of tumor cell-derived antigens by dendritic cells. Int J Cancer 136(5):1085–1094. https://doi.org/10.1002/ijc.29087

    Article  CAS  PubMed  Google Scholar 

  58. Jeannin P, Duluc D, Delneste Y (2011) IL-6 and leukemia-inhibitory factor are involved in the generation of tumor-associated macrophage: regulation by IFN-gamma. Immunotherapy 3(4 Suppl):23–26. https://doi.org/10.2217/imt.11.30

    Article  CAS  PubMed  Google Scholar 

  59. Sun T, Yang Y, Luo X, Cheng Y, Zhang M, Wang K, Ge C (2014) Inhibition of tumor angiogenesis by interferon-gamma by suppression of tumor-associated macrophage differentiation. Oncol Res 21(5):227–235. https://doi.org/10.3727/096504014X13890370410285

    Article  CAS  PubMed  Google Scholar 

  60. Naganuma H, Sasaki A, Satoh E, Nagasaka M, Nakano S, Isoe S, Nukui H (1998) Down-regulation of transforming growth factor-beta and interleukin-10 secretion from malignant glioma cells by cytokines and anticancer drugs. J Neurooncol 39(3):227–236

    Article  CAS  PubMed  Google Scholar 

  61. Beatty GL, Paterson Y (2001) Regulation of tumor growth by IFN-gamma in cancer immunotherapy. Immunol Res 24(2):201–210. https://doi.org/10.1385/IR:24:2:201

    Article  CAS  PubMed  Google Scholar 

  62. Sgadari C, Angiolillo AL, Tosato G (1996) Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood 87(9):3877–3882

    CAS  PubMed  Google Scholar 

  63. Coughlin CM, Salhany KE, Gee MS, LaTemple DC, Kotenko S, Ma X, Gri G, Wysocka M, Kim JE, Liu L, Liao F, Farber JM, Pestka S, Trinchieri G, Lee WM (1998) Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity 9(1):25–34

    Article  CAS  PubMed  Google Scholar 

  64. Bukowski RM, Rayman P, Molto L, Tannenbaum CS, Olencki T, Peereboom D, Tubbs R, McLain D, Budd GT, Griffin T, Novick A, Hamilton TA, Finke J (1999) Interferon-gamma and CXC chemokine induction by interleukin 12 in renal cell carcinoma. Clin Cancer Res 5(10):2780–2789

    CAS  PubMed  Google Scholar 

  65. Lopez-Soto A, Huergo-Zapico L, Acebes-Huerta A, Villa-Alvarez M, Gonzalez S (2015) NKG2D signaling in cancer immunosurveillance. Int J Cancer 136(8):1741–1750. https://doi.org/10.1002/ijc.28775

    Article  CAS  PubMed  Google Scholar 

  66. McGilvray RW, Eagle RA, Watson NF, Al-Attar A, Ball G, Jafferji I, Trowsdale J, Durrant LG (2009) NKG2D ligand expression in human colorectal cancer reveals associations with prognosis and evidence for immunoediting. Clin Cancer Res 15(22):6993–7002. https://doi.org/10.1158/1078-0432.CCR-09-0991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lanier LL (2015) NKG2D Receptor and its ligands in host defense. Cancer Immunol Res 3(6):575–582. https://doi.org/10.1158/2326-6066.CIR-15-0098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brozova J, Karlova I, Novak J (2016) Analysis of the phenotype and function of the subpopulations of mucosal-associated invariant T cells. Scand J Immunol 84(4):245–251. https://doi.org/10.1111/sji.12467

    Article  CAS  PubMed  Google Scholar 

  69. Mullbacher A, Lobigs M, Hla RT, Tran T, Stehle T, Simon MM (2002) Antigen-dependent release of IFN-gamma by cytotoxic T cells up-regulates Fas on target cells and facilitates exocytosis-independent specific target cell lysis. J Immunol 169(1):145–150

    Article  CAS  PubMed  Google Scholar 

  70. Lepore M, Kalinichenko A, Colone A, Paleja B, Singhal A, Tschumi A, Lee B, Poidinger M, Zolezzi F, Quagliata L, Sander P, Newell E, Bertoletti A, Terracciano L, De Libero G, Mori L (2014) Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRbeta repertoire. Nat Commun 5:3866. https://doi.org/10.1038/ncomms4866

    Article  CAS  PubMed  Google Scholar 

  71. Kucharzik T, Lugering N, Winde G, Domschke W, Stoll R (1997) Colon carcinoma cell lines stimulate monocytes and lamina propria mononuclear cells to produce IL-10. Clin Exp Immunol 110(2):296–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Le Bourhis L, Martin E, Peguillet I, Guihot A, Froux N, Core M, Levy E, Dusseaux M, Meyssonnier V, Premel V, Ngo C, Riteau B, Duban L, Robert D, Huang S, Rottman M, Soudais C, Lantz O (2010) Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol 11(8):701–708. https://doi.org/10.1038/ni.1890

    Article  CAS  PubMed  Google Scholar 

  73. Novak J, Dobrovolny J, Brozova J, Novakova L, Kozak T (2016) Recovery of mucosal-associated invariant T cells after myeloablative chemotherapy and autologous peripheral blood stem cell transplantation. Clin Exp Med 16(4):529–537. https://doi.org/10.1007/s10238-015-0384-z

    Article  CAS  PubMed  Google Scholar 

  74. Soudais C, Samassa F, Sarkis M, Le Bourhis L, Bessoles S, Blanot D, Herve M, Schmidt F, Mengin-Lecreulx D, Lantz O (2015) In vitro and in vivo analysis of the gram-negative bacteria-derived riboflavin precursor derivatives activating mouse MAIT cells. J Immunol 194(10):4641–4649. https://doi.org/10.4049/jimmunol.1403224

    Article  CAS  PubMed  Google Scholar 

  75. Mak JY, Xu W, Reid RC, Corbett AJ, Meehan BS, Wang H, Chen Z, Rossjohn J, McCluskey J, Liu L, Fairlie DP (2017) Stabilizing short-lived Schiff base derivatives of 5-aminouracils that activate mucosal-associated invariant T cells. Nat Commun 8:14599. https://doi.org/10.1038/ncomms14599

    Article  PubMed  PubMed Central  Google Scholar 

  76. Keller AN, Eckle SB, Xu W, Liu L, Hughes VA, Mak JY, Meehan BS, Pediongco T, Birkinshaw RW, Chen Z, Wang H, D’Souza C, Kjer-Nielsen L, Gherardin NA, Godfrey DI, Kostenko L, Corbett AJ, Purcell AW, Fairlie DP, McCluskey J, Rossjohn J (2017) Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells. Nat Immunol 18(4):402–411. https://doi.org/10.1038/ni.3679

    Article  CAS  PubMed  Google Scholar 

  77. Zaidi MR, Merlino G (2011) The two faces of interferon-gamma in cancer. Clin Cancer Res 17(19):6118–6124. https://doi.org/10.1158/1078-0432.CCR-11-0482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kursunel MA, Esendagli G (2016) The untold story of IFN-gamma in cancer biology. Cytokine Growth Factor Rev 31:73–81. https://doi.org/10.1016/j.cytogfr.2016.07.005

    Article  PubMed  Google Scholar 

  79. Meermeier EW, Laugel BF, Sewell AK, Corbett AJ, Rossjohn J, McCluskey J, Harriff MJ, Franks T, Gold MC, Lewinsohn DM (2016) Human TRAV1-2-negative MR1-restricted T cells detect S. pyogenes and alternatives to MAIT riboflavin-based antigens. Nat Commun 7:12506. https://doi.org/10.1038/ncomms12506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cui Y, Franciszkiewicz K, Mburu YK, Mondot S, Le Bourhis L, Premel V, Martin E, Kachaner A, Duban L, Ingersoll MA, Rabot S, Jaubert J, De Villartay JP, Soudais C, Lantz O (2015) Mucosal-associated invariant T cell-rich congenic mouse strain allows functional evaluation. J Clin Invest 125(11):4171–4185. https://doi.org/10.1172/JCI82424

    Article  PubMed  PubMed Central  Google Scholar 

  81. Martin E, Treiner E, Duban L, Guerri L, Laude H, Toly C, Premel V, Devys A, Moura IC, Tilloy F, Cherif S, Vera G, Latour S, Soudais C, Lantz O (2009) Stepwise development of MAIT cells in mouse and human. PLoS Biol 7(3):e54. https://doi.org/10.1371/journal.pbio.1000054

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Joshua Choi and Courtney Meilleur from the Haeryfar Laboratory for participating in helpful discussions on the theme of this review.

Funding

The authors’ cited research on the subject was partially funded by a Canadian Institutes of Health Research (CIHR) operating grant (MOP-130465) to S.M. Mansour Haeryfar. Christopher R. Shaler is a CIHR postdoctoral fellowship recipient.

Author information

Authors and Affiliations

Authors

Contributions

CRS and PTR participated in collection of the relevant literature and in preparation of the manuscript. SMMH conceived the theme and organization of the manuscript, participated in collection of the relevant literature, and wrote the manuscript.

Corresponding author

Correspondence to S. M. Mansour Haeryfar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haeryfar, S.M.M., Shaler, C.R. & Rudak, P.T. Mucosa-associated invariant T cells in malignancies: a faithful friend or formidable foe?. Cancer Immunol Immunother 67, 1885–1896 (2018). https://doi.org/10.1007/s00262-018-2132-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2132-1

Keywords

Navigation