Skip to main content

Advertisement

Log in

Cancer- and cardiac-induced cachexia: same fate through different inflammatory mediators?

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Inflammation is widely recognized as the driving force of cachexia induced by chronic diseases; however, therapies targeting inflammation do not always reverse cachexia. Thus, whether inflammation per se plays an important role in the clinical course of cachectic patients is still a matter of debate.

Aims

To give new insights into cachexia’s pathogenesis and diagnosis, we performed a comprehensive literature search on the contribution of inflammatory markers to this syndrome, focusing on the noncommunicable diseases cancer and cardiovascular diseases.

Methods

A systematic review was performed in PubMed using the keywords (“cancer” OR “cardiac” cachexia AND “human” OR “patient” AND “plasma” or “serum”). A total of 744 studies were retrieved and, from these, 206 were selected for full-text screening. In the end, 98 papers focusing on circulating biomarkers of cachexia were identified, which resulted in a list of 113 different mediators.

Results

Data collected from the literature highlight the contribution of interleukin-6 (IL-6) and C-reactive protein (CRP) to cachexia, independently of the underlying condition. Despite not being specific, once the diagnosis of cachexia is established, CRP might help to monitor the effectiveness of anti-cachexia therapies. In cardiac diseases, B-type natriuretic peptide (BNP), renin, and obestatin might be putative markers of body wasting, whereas in cancer, growth differentiation factor (GDF) 15, transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF) C seem to be better markers of this syndrome. Independently of the circulating mediators, NF-κB and JAK/STAT signaling pathways play a key role in bridging inflammation with muscle wasting; however, therapies targeting these pathways were not proven effective for all cachectic patients.

Conclusion

The critical and integrative analysis performed herein will certainly feed future research focused on the better comprehension of cachexia pathogenesis toward the improvement of its diagnosis and the development of personalized therapies targeting specific cachexia phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Onesti JK, Guttridge DC. Inflammation based regulation of cancer cachexia. Biomed Res Int. 2014;2014:168407. https://doi.org/10.1155/2014/168407.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schcolnik-Cabrera A, Chavez-Blanco A, Dominguez-Gomez G, Duenas-Gonzalez A. Understanding tumor anabolism and patient catabolism in cancer-associated cachexia. Am J Cancer Res. 2017;7:1107–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer. 2014;14:754–62. https://doi.org/10.1038/nrc3829.

    Article  CAS  PubMed  Google Scholar 

  4. Argiles JM, Betancourt A, Guardia-Olmos J, et al. Validation of the CAchexia SCOre (CASCO) staging cancer patients: the use of miniCASCO as a simplified tool. Front Physiol. 2017;8:92. https://doi.org/10.3389/fphys.2017.00092.

    Article  PubMed  PubMed Central  Google Scholar 

  5. von Haehling S, Ebner N, Dos Santos MR, Springer J, Anker SD. Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat Rev Cardiol. 2017;14:323–41. https://doi.org/10.1038/nrcardio.2017.51.

    Article  CAS  Google Scholar 

  6. Anker SD, Negassa A, Coats AJ, Afzal R, Poole-Wilson PA, Cohn JN, Yusuf S. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet. 2003;361:1077–83. https://doi.org/10.1016/S0140-6736(03)12892-9.

    Article  CAS  PubMed  Google Scholar 

  7. Christensen HM, Kistorp C, Schou M, et al. Prevalence of cachexia in chronic heart failure and characteristics of body composition and metabolic status. Endocrine. 2013;43:626–34. https://doi.org/10.1007/s12020-012-9836-3.

    Article  CAS  PubMed  Google Scholar 

  8. von Haehling S, Anker SD. Cachexia as a major underestimated and unmet medical need: facts and numbers. J Cachex Sarcopenia Muscle. 2010;1:1–5. https://doi.org/10.1007/s13539-010-0002-6.

    Article  Google Scholar 

  9. Saitoh M, Ishida J, Doehner W, et al. Sarcopenia, cachexia, and muscle performance in heart failure: review update 2016. Int J Cardiol. 2017;238:5–11. https://doi.org/10.1016/j.ijcard.2017.03.155.

    Article  PubMed  Google Scholar 

  10. Kofler S, Nickel T, Weis M. Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation. Clin Sci (Lond). 2005;108:205–13. https://doi.org/10.1042/CS20040174.

    Article  CAS  Google Scholar 

  11. Yndestad A, Damas JK, Oie E, Ueland T, Gullestad L, Aukrust P. Systemic inflammation in heart failure–the whys and wherefores. Heart Fail Rev. 2006;11:83–92. https://doi.org/10.1007/s10741-006-9196-2.

    Article  CAS  PubMed  Google Scholar 

  12. Martins T, Vitorino R, Moreira-Goncalves D, Amado F, Duarte JA, Ferreira R. Recent insights on the molecular mechanisms and therapeutic approaches for cardiac cachexia. Clin Biochem. 2014;47:8–15. https://doi.org/10.1016/j.clinbiochem.2013.10.025.

    Article  CAS  PubMed  Google Scholar 

  13. Antunes JMM, Ferreira RMP, Moreira-Goncalves D. Exercise training as therapy for cancer-induced cardiac cachexia. Trends Mol Med. 2018. https://doi.org/10.1016/j.molmed.2018.06.002.

    Article  PubMed  Google Scholar 

  14. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541:321–30. https://doi.org/10.1038/nature21349.

    Article  CAS  PubMed  Google Scholar 

  15. Van Linthout S, Tschöpe C. Inflammation – cause or consequence of heart failure or both? Curr Heart Fail Rep. 2017;14:251–65. https://doi.org/10.1007/s11897-017-0337-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tisdale MJ. Are tumoral factors responsible for host tissue wasting in cancer cachexia? Future Oncol. 2010;6:503–13. https://doi.org/10.2217/fon.10.20.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Bauersachs J, Langer HF. Immune mechanisms in heart failure. Eur J Heart Fail. 2017;19:1379–89. https://doi.org/10.1002/ejhf.942.

    Article  PubMed  Google Scholar 

  18. Tousoulis D, Charakida M, Stefanadis C. Inflammation and endothelial dysfunction as therapeutic targets in patients with heart failure. Int J Cardiol. 2005;100:347–53. https://doi.org/10.1016/j.ijcard.2004.05.030.

    Article  PubMed  Google Scholar 

  19. Argiles JM. The 2015 ESPEN Sir David Cuthbertson lecture: inflammation as the driving force of muscle wasting in cancer. Clin Nutr. 2017;36:798–803. https://doi.org/10.1016/j.clnu.2016.05.010.

    Article  PubMed  Google Scholar 

  20. Klein GL, Petschow BW, Shaw AL, Weaver E. Gut barrier dysfunction and microbial translocation in cancer cachexia: a new therapeutic target. Curr Opin Support Palliat Care. 2013;7:361–7. https://doi.org/10.1097/SPC.0000000000000017.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lam V, Su J, Koprowski S, et al. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J. 2012;26:1727–35. https://doi.org/10.1096/fj.11-197921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Genton L, Mareschal J, Charretier Y, Lazarevic V, Bindels LB, Schrenzel J. Targeting the gut microbiota to treat cachexia. Front Cell Infect Microbiol. 2019. https://doi.org/10.3389/fcimb.2019.00305.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Porporato PE. Understanding cachexia as a cancer metabolism syndrome. Oncogenesis. 2016;5:e200–e200. https://doi.org/10.1038/oncsis.2016.3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pajak B, Orzechowska S, Pijet B, Pijet M, Pogorzelska A, Gajkowska B, Orzechowski A. Crossroads of cytokine signaling–the chase to stop muscle cachexia. J Physiol Pharmacol. 2008;59(Suppl 9):251–64.

    PubMed  Google Scholar 

  25. Blaes A, Prizment A, Koene RJ, Konety S. Cardio-oncology related to heart failure: common risk factors between cancer and cardiovascular disease. Heart Fail Clin. 2017;13:367–80. https://doi.org/10.1016/j.hfc.2016.12.006.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bolat I, Biteker M. Modified glasgow prognostic score is a novel predictor of clinical outcome in heart failure with preserved ejection fraction. Scand Cardiovasc J. 2020. https://doi.org/10.1080/14017431.2019.1709656.

    Article  PubMed  Google Scholar 

  27. Volanakis JE. Human C-reactive protein: expression, structure, and function. Mol Immunol. 2001;38:189–97. https://doi.org/10.1016/s0161-5890(01)00042-6.

    Article  CAS  PubMed  Google Scholar 

  28. Marnell L, Mold C, Du Clos TW. C-reactive protein: ligands, receptors and role in inflammation. Clin Immunol. 2005;117:104–11. https://doi.org/10.1016/j.clim.2005.08.004.

    Article  CAS  PubMed  Google Scholar 

  29. Schimmack S, Yang Y, Felix K, et al. C-reactive protein (CRP) promotes malignant properties in pancreatic neuroendocrine neoplasms. Endocr Connect. 2019;8:1007–19. https://doi.org/10.1530/EC-19-0132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Verma S, Szmitko PE, Yeh ET. C-reactive protein: structure affects function. Circulation. 2004;109:1914–7. https://doi.org/10.1161/01.CIR.0000127085.32999.64.

    Article  PubMed  Google Scholar 

  31. Kitagawa M, Haji S, Amagai T. High serum essential amino acids as a predictor of skeletal muscle depletion in patients with cachexia and advanced gastrointestinal cancers. Nutr Clin Pract. 2017;32:645–51. https://doi.org/10.1177/0884533617724742.

    Article  CAS  PubMed  Google Scholar 

  32. Tavares P, Gonçalves DM, Santos LL, Ferreira R. Revisiting the clinical usefulness of C-reactive protein in the set of cancer cachexia. Porto Biomed J. 2021;6:e123. https://doi.org/10.1097/j.pbj.0000000000000123.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Biolo G, Cederholm T, Muscaritoli M. Muscle contractile and metabolic dysfunction is a common feature of sarcopenia of aging and chronic diseases: from sarcopenic obesity to cachexia. Clin Nutr. 2014;33:737–48. https://doi.org/10.1016/j.clnu.2014.03.007.

    Article  PubMed  Google Scholar 

  34. Patel HJ, Patel BM. TNF-alpha and cancer cachexia: Molecular insights and clinical implications. Life Sci. 2017;170:56–63. https://doi.org/10.1016/j.lfs.2016.11.033.

    Article  CAS  PubMed  Google Scholar 

  35. Weitzel LB, Ambardekar AV, Brieke A, Cleveland JC, Serkova NJ, Wischmeyer PE, Lowes BD. Left ventricular assist device effects on metabolic substrates in the failing heart. PLoS ONE. 2013;8:e60292. https://doi.org/10.1371/journal.pone.0060292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miller J, Alshehri A, Ramage MI, et al. Plasma metabolomics identifies lipid and amino acid markers of weight loss in patients with upper gastrointestinal cancer. Cancers (Basel). 2019. https://doi.org/10.3390/cancers11101594.

    Article  PubMed Central  Google Scholar 

  37. Hou YC, Wang CJ, Chao YJ, et al. Elevated serum interleukin-8 level correlates with cancer-related cachexia and sarcopenia: an indicator for pancreatic cancer outcomes. J Clin Med. 2018. https://doi.org/10.3390/jcm7120502.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fujiwara Y, Kobayashi T, Chayahara N, et al. Metabolomics evaluation of serum markers for cachexia and their intra-day variation in patients with advanced pancreatic cancer. PLoS ONE. 2014;9:e113259. https://doi.org/10.1371/journal.pone.0113259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gulen ST, Karadag F, Karul AB, Kilicarslan N, Ceylan E, Kuman NK, Cildag O. Adipokines and systemic inflammation in weight-losing lung cancer patients. Lung. 2012;190:327–32. https://doi.org/10.1007/s00408-011-9364-6.

    Article  CAS  PubMed  Google Scholar 

  40. Agustsson T, Ryden M, Hoffstedt J, et al. Mechanism of increased lipolysis in cancer cachexia. Cancer Res. 2007;67:5531–7. https://doi.org/10.1158/0008-5472.CAN-06-4585.

    Article  CAS  PubMed  Google Scholar 

  41. Refsgaard Holm M, Christensen H, Rasmussen J, Johansen ML, Schou M, Faber J, Kistorp C. Fibroblast growth factor 21 in patients with cardiac cachexia: a possible role of chronic inflammation. ESC Heart Fail. 2019;6:983–91. https://doi.org/10.1002/ehf2.12502.

    Article  PubMed  PubMed Central  Google Scholar 

  42. la Cour JL, Christensen HM, Köhrle J, Lehmphul I, Kistorp C, Nygaard B, Faber J. Association between 3-Iodothyronamine (T1am) concentrations and left ventricular function in chronic heart failure. J Clin Endocrinol Metab. 2018;104:1232–8. https://doi.org/10.1210/jc.2018-01466.

    Article  Google Scholar 

  43. Christensen HM, Kistorp C, Schou M, et al. Cross-talk between the heart and adipose tissue in cachectic heart failure patients with respect to alterations in body composition: a prospective study. Metab Clin Exp. 2014;63:141–9. https://doi.org/10.1016/j.metabol.2013.09.017.

    Article  CAS  PubMed  Google Scholar 

  44. McEntegart MB, Awede B, Petrie MC, Sattar N, Dunn FG, MacFarlane NG, McMurray JJ. Increase in serum adiponectin concentration in patients with heart failure and cachexia: relationship with leptin, other cytokines, and B-type natriuretic peptide. Eur Heart J. 2007;28:829–35. https://doi.org/10.1093/eurheartj/ehm033.

    Article  CAS  PubMed  Google Scholar 

  45. Shrotriya S, Walsh D, Bennani-Baiti N, Thomas S, Lorton C. C-Reactive protein is an important biomarker for prognosis tumor recurrence and treatment response in adult solid tumors: a systematic review. PLoS ONE. 2015;10:e0143080–e0143080. https://doi.org/10.1371/journal.pone.0143080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lavriv DS, Neves PM, Ravasco P. Should omega-3 fatty acids be used for adjuvant treatment of cancer cachexia? Clin Nutr ESPEN. 2018;25:18–25. https://doi.org/10.1016/j.clnesp.2018.02.006.

    Article  PubMed  Google Scholar 

  47. Maddocks M, Jones LW, Wilcock A. Immunological and hormonal effects of exercise: implications for cancer cachexia. Curr Opin Support Palliat Care. 2013;7:376–82. https://doi.org/10.1097/SPC.0000000000000010.

    Article  PubMed  Google Scholar 

  48. Macciò A, Madeddu C, Gramignano G, et al. A randomized phase III clinical trial of a combined treatment for cachexia in patients with gynecological cancers: evaluating the impact on metabolic and inflammatory profiles and quality of life. Gynecol Oncol. 2012;124:417–25. https://doi.org/10.1016/j.ygyno.2011.12.435.

    Article  CAS  PubMed  Google Scholar 

  49. Gray S, Axelsson B. The prevalence of deranged C-reactive protein and albumin in patients with incurable cancer approaching death. PLoS ONE. 2018;13:e0193693. https://doi.org/10.1371/journal.pone.0193693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lerner L, Tao J, Liu Q, et al. MAP3K11/GDF15 axis is a critical driver of cancer cachexia. J Cachexia Sarcopenia Muscle. 2016;7:467–82. https://doi.org/10.1002/jcsm.12077.

    Article  PubMed  Google Scholar 

  51. Bindels LB, Neyrinck AM, Loumaye A, et al. Increased gut permeability in cancer cachexia: mechanisms and clinical relevance. Oncotarget. 2018;9:18224–38. https://doi.org/10.18632/oncotarget.24804.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kayacan O, Karnak D, Beder S, Gullu E, Tutkak H, Senler FC, Koksal D. Impact of TNF-alpha and IL-6 levels on development of cachexia in newly diagnosed NSCLC patients. Am J Clin Oncol. 2006;29:328–35. https://doi.org/10.1097/01.coc.0000221300.72657.e0.

    Article  CAS  PubMed  Google Scholar 

  53. Weber MA, Kinscherf R, Krakowski-Roosen H, et al. Myoglobin plasma level related to muscle mass and fiber composition: a clinical marker of muscle wasting? J Mol Med (Berl). 2007;85:887–96. https://doi.org/10.1007/s00109-007-0220-3.

    Article  CAS  Google Scholar 

  54. Yang QJ, Zhao JR, Hao J, et al. Serum and urine metabolomics study reveals a distinct diagnostic model for cancer cachexia. J Cachexia Sarcopenia Muscle. 2018;9:71–85. https://doi.org/10.1002/jcsm.12246.

    Article  PubMed  Google Scholar 

  55. Moses AGW, Maingay J, Sangster K, Fearon KCH, Ross JA. Pro-inflammatory cytokine release by peripheral blood mononuclear cells from patients with advanced pancreatic cancer: relationship to acute phase response and survival. Oncol Rep. 2009;21:1091–5. https://doi.org/10.3892/or_00000328.

    Article  CAS  PubMed  Google Scholar 

  56. Witte KKA, Ford SJ, Preston T, Parker JD, Clark AL. Fibrinogen synthesis is increased in cachectic patients with chronic heart failure. Int J Cardiol. 2008;129:363–7. https://doi.org/10.1016/j.ijcard.2007.07.119.

    Article  PubMed  Google Scholar 

  57. Tanaka T, Kishimoto T. The biology and medical implications of interleukin-6. Cancer Immunol Res. 2014;2:288–94. https://doi.org/10.1158/2326-6066.CIR-14-0022.

    Article  CAS  PubMed  Google Scholar 

  58. Zimmers TA, Fishel ML, Bonetto A. STAT3 in the systemic inflammation of cancer cachexia. Semin Cell Dev Biol. 2016;54:28–41. https://doi.org/10.1016/j.semcdb.2016.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bonetto A, Aydogdu T, Jin X, et al. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am J Physiol Endocrinol Metab. 2012;303:E410-421. https://doi.org/10.1152/ajpendo.00039.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8:457–65. https://doi.org/10.1038/nrendo.2012.49.

    Article  CAS  PubMed  Google Scholar 

  61. Munoz-Canoves P, Scheele C, Pedersen BK, Serrano AL. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J. 2013;280:4131–48. https://doi.org/10.1111/febs.12338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Garcia JM, Garcia-Touza M, Hijazi RA, et al. Active ghrelin levels and active to total ghrelin ratio in cancer-induced cachexia. J Clin Endocrinol Metab. 2005;90:2920–6. https://doi.org/10.1210/jc.2004-1788.

    Article  CAS  PubMed  Google Scholar 

  63. Burney BO, Hayes TG, Smiechowska J, et al. Low testosterone levels and increased inflammatory markers in patients with cancer and relationship with cachexia. J Clin Endocrinol Metab. 2012;97:E700-709. https://doi.org/10.1210/jc.2011-2387.

    Article  CAS  PubMed  Google Scholar 

  64. de Castro GS, Correia-Lima J, Simoes E, et al. Myokines in treatment-naïve patients with cancer-associated cachexia. Clin Nutr. 2021;40:2443–55. https://doi.org/10.1016/j.clnu.2020.10.050.

    Article  CAS  PubMed  Google Scholar 

  65. Bilir C, Engin H, Can M, Temi YB, Demirtas D. The prognostic role of inflammation and hormones in patients with metastatic cancer with cachexia. Med Oncol. 2015;32:56. https://doi.org/10.1007/s12032-015-0497-y.

    Article  CAS  PubMed  Google Scholar 

  66. Fogelman DR, Morris J, Xiao L, et al. A predictive model of inflammatory markers and patient-reported symptoms for cachexia in newly diagnosed pancreatic cancer patients. Support Care Cancer. 2017;25:1809–17. https://doi.org/10.1007/s00520-016-3553-z.

    Article  PubMed  Google Scholar 

  67. Riccardi D, das Neves RX, de Matos-Neto EM, et al. Plasma lipid profile and systemic inflammation in patients with cancer cachexia. Front Nutr. 2020;7:4. https://doi.org/10.3389/fnut.2020.00004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kemik O, Sumer A, Kemik AS, et al. The relationship among acute-phase response proteins, cytokines and hormones in cachectic patients with colon cancer. World J Surg Oncol. 2010;8:85–85. https://doi.org/10.1186/1477-7819-8-85.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Krzystek-Korpacka M, Matusiewicz M, Diakowska D, Grabowski K, Blachut K, Kustrzeba-Wojcicka I, Banas T. Impact of weight loss on circulating IL-1, IL-6, IL-8, TNF-alpha, VEGF-A, VEGF-C and midkine in gastroesophageal cancer patients. Clin Biochem. 2007;40:1353–60. https://doi.org/10.1016/j.clinbiochem.2007.07.013.

    Article  CAS  PubMed  Google Scholar 

  70. Tazaki E, Shimizu N, Tanaka R, et al. Serum cytokine profiles in patients with prostate carcinoma. Exp Ther Med. 2011;2:887–91. https://doi.org/10.3892/etm.2011.286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dulger H, Alici S, Sekeroglu MR, Erkog R, Ozbek H, Noyan T, Yavuz M. Serum levels of leptin and proinflammatory cytokines in patients with gastrointestinal cancer. Int J Clin Pract. 2004;58:545–9. https://doi.org/10.1111/j.1368-5031.2004.00149.x.

    Article  CAS  PubMed  Google Scholar 

  72. Richey LM, George JR, Couch ME, et al. Defining cancer cachexia in head and neck squamous cell carcinoma. Clin Cancer Res. 2007;13:6561–7. https://doi.org/10.1158/1078-0432.CCR-07-0116.

    Article  CAS  PubMed  Google Scholar 

  73. Filippatos GS, Tsilias K, Venetsanou K, et al. Leptin serum levels in cachectic heart failure patients. Relationship with tumor necrosis factor-alpha system. Int J Cardiol. 2000;76:117–22. https://doi.org/10.1016/s0167-5273(00)00397-1.

    Article  CAS  PubMed  Google Scholar 

  74. Anker SD, Ponikowski PP, Clark AL, et al. Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure. Eur Heart J. 1999;20:683–93. https://doi.org/10.1053/euhj.1998.1446.

    Article  CAS  PubMed  Google Scholar 

  75. Martinez-Hernandez PL, Hernanz-Macias A, Gomez-Candela C, et al. Serum interleukin-15 levels in cancer patients with cachexia. Oncol Rep. 2012;28:1443–52. https://doi.org/10.3892/or.2012.1928.

    Article  CAS  PubMed  Google Scholar 

  76. Lerner L, Hayes TG, Tao N, et al. Plasma growth differentiation factor 15 is associated with weight loss and mortality in cancer patients. J Cachexia Sarcopenia Muscle. 2015;6:317–24. https://doi.org/10.1002/jcsm.12033.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fortunati N, Manti R, Birocco N, et al. Pro-inflammatory cytokines and oxidative stress/antioxidant parameters characterize the bio-humoral profile of early cachexia in lung cancer patients. Oncol Rep. 2007;18:1521–7.

    CAS  PubMed  Google Scholar 

  78. Shibata M, Takekawa M, Amano S. Increased serum concentrations of soluble tumor necrosis factor receptor I in noncachectic and cachectic patients with advanced gastric and colorectal cancer. Surg Today. 1998;28:884–8. https://doi.org/10.1007/s005950050247.

    Article  CAS  PubMed  Google Scholar 

  79. Takahashi M, Terashima M, Takagane A, Oyama K, Fujiwara H, Wakabayashi G. Ghrelin and leptin levels in cachectic patients with cancer of the digestive organs. Int J Clin Oncol. 2009;14:315–20. https://doi.org/10.1007/s10147-008-0856-1.

    Article  CAS  PubMed  Google Scholar 

  80. Batista ML, Olivan M, Alcantara PSM, et al. Adipose tissue-derived factors as potential biomarkers in cachectic cancer patients. Cytokine. 2013;61:532–9. https://doi.org/10.1016/j.cyto.2012.10.023.

    Article  CAS  PubMed  Google Scholar 

  81. Shibata M, Nezu T, Takekawa M, et al. Serum levels of interleukin-10 and interleukin-12 in patients with colorectal cancer. Ann N Y Acad Sci. 1996;795:410–2. https://doi.org/10.1111/j.1749-6632.1996.tb52707.x.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang H, Xu X. Mutation-promoting molecular networks of uncontrolled inflammation. Tumour Biol. 2017;39:1010428317701310. https://doi.org/10.1177/1010428317701310.

    Article  CAS  PubMed  Google Scholar 

  83. Liang Y, Zhou Y, Shen P. NF-kappaB and its regulation on the immune system. Cell Mol Immunol. 2004;1:343–50.

    CAS  PubMed  Google Scholar 

  84. Morley JE, Thomas DR, Wilson MM. Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr. 2006;83:735–43. https://doi.org/10.1093/ajcn/83.4.735.

    Article  CAS  PubMed  Google Scholar 

  85. Cawthorn WP, Sethi JK. TNF-alpha and adipocyte biology. FEBS Lett. 2008;582:117–31. https://doi.org/10.1016/j.febslet.2007.11.051.

    Article  CAS  PubMed  Google Scholar 

  86. Han HQ, Mitch WE. Targeting the myostatin signaling pathway to treat muscle wasting diseases. Curr Opin Support Palliat Care. 2011;5:334–41. https://doi.org/10.1097/SPC.0b013e32834bddf9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Moreira-Goncalves D, Padrao AI, Ferreira R, et al. Signaling pathways underlying skeletal muscle wasting in experimental pulmonary arterial hypertension. Biochim Biophys Acta. 2015;1852:2722–31. https://doi.org/10.1016/j.bbadis.2015.10.002.

    Article  CAS  PubMed  Google Scholar 

  88. Yoshida T, Delafontaine P. Mechanisms of cachexia in chronic disease states. Am J Med Sci. 2015;350:250–6. https://doi.org/10.1097/MAJ.0000000000000511.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Padrao AI, Oliveira P, Vitorino R, et al. Bladder cancer-induced skeletal muscle wasting: disclosing the role of mitochondria plasticity. Int J Biochem Cell Biol. 2013;45:1399–409. https://doi.org/10.1016/j.biocel.2013.04.014.

    Article  CAS  PubMed  Google Scholar 

  90. Loumaye A, de Barsy M, Nachit M, et al. Role of activin A and myostatin in human cancer cachexia. J Clin Endocrinol Metab. 2015;100:2030–8. https://doi.org/10.1210/jc.2014-4318.

    Article  CAS  PubMed  Google Scholar 

  91. Tisdale MJ. The “cancer cachectic factor.” Support Care Cancer. 2003;11:73–8. https://doi.org/10.1007/s00520-002-0408-6.

    Article  PubMed  Google Scholar 

  92. Penafuerte CA, Gagnon B, Sirois J, Murphy J, MacDonald N, Tremblay ML. Identification of neutrophil-derived proteases and angiotensin II as biomarkers of cancer cachexia. Br J Cancer. 2016;114:680–7. https://doi.org/10.1038/bjc.2016.3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. McCartney-Francis N, Jin W, Wahl SM. Aberrant toll receptor expression and endotoxin hypersensitivity in mice lacking a functional TGF-beta 1 signaling pathway. J Immunol. 2004;172:3814–21. https://doi.org/10.4049/jimmunol.172.6.3814.

    Article  CAS  PubMed  Google Scholar 

  94. Waning DL, Mohammad KS, Reiken S, et al. Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nat Med. 2015;21:1262–71. https://doi.org/10.1038/nm.3961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Johnen H, Lin S, Kuffner T, et al. Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1. Nat Med. 2007;13:1333–40. https://doi.org/10.1038/nm1677.

    Article  CAS  PubMed  Google Scholar 

  96. Ahmed DS, Isnard S, Lin J, Routy B, Routy J-P. GDF15/GFRAL pathway as a metabolic signature for cachexia in patients with cancer. J Cancer. 2021;12:1125–32. https://doi.org/10.7150/jca.50376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ost M, Igual Gil C, Coleman V, et al. Muscle-derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress. EMBO Rep. 2020;21:e48804–e48804. https://doi.org/10.15252/embr.201948804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lai Y-C, Provencher S, Goncharova EA. TAKling GDF-15 and skeletal muscle atrophy in pulmonary hypertension: are we there yet? Thorax. 2019;74:103–5. https://doi.org/10.1136/thoraxjnl-2018-212680.

    Article  PubMed  Google Scholar 

  99. Laurens C, Parmar A, Murphy E, et al. Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans. JCI Insight. 2020;5:e131870. https://doi.org/10.1172/jci.insight.131870.

    Article  PubMed Central  Google Scholar 

  100. Bloch SAA, Lee JY, Wort SJ, Polkey MI, Kemp PR, Griffiths MJD. Sustained elevation of circulating growth and differentiation factor-15 and a dynamic imbalance in mediators of muscle homeostasis are associated with the development of acute muscle wasting following cardiac surgery*. Crit Care Med. 2013. https://doi.org/10.1097/CCM.0b013e318274671b.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol. 2006;7:359–71. https://doi.org/10.1038/nrm1911.

    Article  CAS  PubMed  Google Scholar 

  102. Ferrara N. Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res. 2000;55:15–35.

    CAS  PubMed  Google Scholar 

  103. Krzystek-Korpacka M, Matusiewicz M, Diakowska D, et al. Acute-phase response proteins are related to cachexia and accelerated angiogenesis in gastroesophageal cancers. Clin Chem Lab Med. 2008;46:359–64. https://doi.org/10.1515/CCLM.2008.089.

    Article  CAS  PubMed  Google Scholar 

  104. Lohela M, Bry M, Tammela T, Alitalo K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol. 2009;21:154–65. https://doi.org/10.1016/j.ceb.2008.12.012.

    Article  CAS  PubMed  Google Scholar 

  105. Fischer C, Mazzone M, Jonckx B, Carmeliet P. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer. 2008;8:942–56. https://doi.org/10.1038/nrc2524.

    Article  CAS  PubMed  Google Scholar 

  106. Rauniyar K, Jha SK, Jeltsch M. Biology of vascular endothelial growth factor C in the morphogenesis of lymphatic vessels. Front Bioeng Biotechnol. 2018;6:7. https://doi.org/10.3389/fbioe.2018.00007.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zhao T, Zhao W, Meng W, Liu C, Chen Y, Sun Y. Vascular endothelial growth factor-C: its unrevealed role in fibrogenesis. Am J Physiol Heart Circ Physiol. 2014;306:H789-796. https://doi.org/10.1152/ajpheart.00559.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Smythe G. Role of growth factors in modulation of the microvasculature in adult skeletal muscle. Adv Exp Med Biol. 2016;900:161–83. https://doi.org/10.1007/978-3-319-27511-6_7.

    Article  CAS  PubMed  Google Scholar 

  109. Lacquaniti A, Donato V, Chirico V, Buemi A, Buemi M. Obestatin: an interesting but controversial gut hormone. Ann Nutr Metab. 2011;59:193–9. https://doi.org/10.1159/000334106.

    Article  CAS  PubMed  Google Scholar 

  110. Xin X, Ren AJ, Zheng X, Qin YW, Zhao XX, Yuan WJ, Guo ZF. Disturbance of circulating ghrelin and obestatin in chronic heart failure patients especially in those with cachexia. Peptides. 2009;30:2281–5. https://doi.org/10.1016/j.peptides.2009.07.026.

    Article  CAS  PubMed  Google Scholar 

  111. Huang Q, Fan YZ, Ge BJ, Zhu Q, Tu ZY. Circulating ghrelin in patients with gastric or colorectal cancer. Dig Dis Sci. 2007;52:803–9. https://doi.org/10.1007/s10620-006-9508-3.

    Article  CAS  PubMed  Google Scholar 

  112. Lilleness BM, Frishman WH. Ghrelin and the cardiovascular system. Cardiol Rev. 2016;24:288–97. https://doi.org/10.1097/CRD.0000000000000113.

    Article  PubMed  Google Scholar 

  113. Nagaya N, Uematsu M, Kojima M, et al. Elevated circulating level of ghrelin in cachexia associated with chronic heart failure: relationships between ghrelin and anabolic/catabolic factors. Circulation. 2001;104:2034–8. https://doi.org/10.1161/hc4201.097836.

    Article  CAS  PubMed  Google Scholar 

  114. Shen C, Zhou J, Wang X, et al. Angiotensin-II-induced muscle wasting is mediated by 25-hydroxycholesterol via GSK3beta signaling pathway. EBioMedicine. 2017;16:238–50. https://doi.org/10.1016/j.ebiom.2017.01.040.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Anker SD, Chua TP, Ponikowski P, et al. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation. 1997;96:526–34. https://doi.org/10.1161/01.cir.96.2.526.

    Article  CAS  PubMed  Google Scholar 

  116. Anker SD, Volterrani M, Pflaum CD, et al. Acquired growth hormone resistance in patients with chronic heart failure: implications for therapy with growth hormone. J Am Coll Cardiol. 2001;38:443–52. https://doi.org/10.1016/s0735-1097(01)01385-7.

    Article  CAS  PubMed  Google Scholar 

  117. Kerem M, Ferahkose Z, Yilmaz UT, et al. Adipokines and ghrelin in gastric cancer cachexia. World J Gastroenterol. 2008;14:3633–41. https://doi.org/10.3748/wjg.14.3633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Huang X-y, Huang Z-l, Yang J-h, et al. Pancreatic cancer cell-derived IGFBP-3 contributes to muscle wasting. J Exp Clin Cancer Res. 2016;35:46. https://doi.org/10.1186/s13046-016-0317-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Trobec K, von Haehling S, Anker SD, Lainscak M. Growth hormone, insulin-like growth factor 1, and insulin signaling-a pharmacological target in body wasting and cachexia. J Cachexia Sarcopenia Muscle. 2011;2:191–200. https://doi.org/10.1007/s13539-011-0043-5.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Doust J, Lehman R, Glasziou P. The role of BNP testing in heart failure. Am Fam Physician. 2006;74:1893–8.

    PubMed  Google Scholar 

  121. Bozcali E, Polat V, Akbulut H, Ferzeyn Yavuzkir M, Karaca I. Serum adiponectin, anemia and left ventricular dimensions in patients with cardiac cachexia. Cardiology. 2013;126:207–13. https://doi.org/10.1159/000353291.

    Article  CAS  PubMed  Google Scholar 

  122. Tedeschi S, Pilotti E, Parenti E, et al. Serum adipokine zinc alpha2-glycoprotein and lipolysis in cachectic and noncachectic heart failure patients: relationship with neurohormonal and inflammatory biomarkers. Metabolism. 2012;61:37–42. https://doi.org/10.1016/j.metabol.2011.05.011.

    Article  CAS  PubMed  Google Scholar 

  123. Paulo Araújo J, Lourenço P, Rocha-Gonçalves F, Ferreira A, Bettencourt P. Adiponectin is increased in cardiac cachexia irrespective of body mass index. Eur J Heart Fail. 2009;11:567–72. https://doi.org/10.1093/eurjhf/hfp046.

    Article  CAS  Google Scholar 

  124. Vaz Pérez A, Doehner W, von Haehling S, et al. The relationship between tumor necrosis factor-α, brain natriuretic peptide and atrial natriuretic peptide in patients with chronic heart failure. Int J Cardiol. 2010;141:39–43. https://doi.org/10.1016/j.ijcard.2008.11.146.

    Article  PubMed  Google Scholar 

  125. Kalkan AK, Cakmak HA, Erturk M, et al. Adropin and irisin in patients with cardiac cachexia. Arq Bras Cardiol. 2018;111:39–47. https://doi.org/10.5935/abc.20180109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Abassi Z, Karram T, Ellaham S, Winaver J, Hoffman A. Implications of the natriuretic peptide system in the pathogenesis of heart failure: diagnostic and therapeutic importance. Pharmacol Ther. 2004;102:223–41. https://doi.org/10.1016/j.pharmthera.2004.04.004.

    Article  CAS  PubMed  Google Scholar 

  127. Prado BL, Qian Y. Anti-cytokines in the treatment of cancer cachexia. Ann Palliat Med. 2018;8:67–79. https://doi.org/10.21037/apm.2018.07.06.

    Article  PubMed  Google Scholar 

  128. Wakabayashi H, Arai H, Inui A. The regulatory approval of anamorelin for treatment of cachexia in patients with non-small cell lung cancer, gastric cancer, pancreatic cancer, and colorectal cancer in Japan: facts and numbers. J Cachexia Sarcopenia Muscle. 2021;12:14–6. https://doi.org/10.1002/jcsm.12675.

    Article  PubMed  Google Scholar 

  129. Gordon JN, Goggin PM. Thalidomide and its derivatives: emerging from the wilderness. Postgrad Med J. 2003;79:127–32. https://doi.org/10.1136/pmj.79.929.127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mueller TC, Bachmann J, Prokopchuk O, Friess H, Martignoni ME. Molecular pathways leading to loss of skeletal muscle mass in cancer cachexia – can findings from animal models be translated to humans? BMC Cancer. 2016;16:75. https://doi.org/10.1186/s12885-016-2121-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Saccani A, Schioppa T, Porta C, et al. p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res. 2006;66:11432–40. https://doi.org/10.1158/0008-5472.CAN-06-1867.

    Article  CAS  PubMed  Google Scholar 

  132. Batista ML Jr, Peres SB, McDonald ME, et al. Adipose tissue inflammation and cancer cachexia: possible role of nuclear transcription factors. Cytokine. 2012;57:9–16. https://doi.org/10.1016/j.cyto.2011.10.008.

    Article  CAS  PubMed  Google Scholar 

  133. Penna F, Bonetto A, Aversa Z, Minero VG, Rossi Fanelli F, Costelli P, Muscaritoli M. Effect of the specific proteasome inhibitor bortezomib on cancer-related muscle wasting. J Cachexia Sarcopenia Muscle. 2016;7:345–54. https://doi.org/10.1002/jcsm.12050.

    Article  PubMed  Google Scholar 

  134. Bossola M, Pacelli F, Tortorelli A, Rosa F, Doglietto GB. Skeletal muscle in cancer cachexia: the ideal target of drug therapy. Curr Cancer Drug Targets. 2008;8:285–98. https://doi.org/10.2174/156800908784533463.

    Article  CAS  PubMed  Google Scholar 

  135. Jatoi A, Dakhil SR, Nguyen PL, et al. A placebo-controlled double blind trial of etanercept for the cancer anorexia/weight loss syndrome. Cancer. 2007;110:1396–403. https://doi.org/10.1002/cncr.22944.

    Article  CAS  PubMed  Google Scholar 

  136. Wiedenmann B, Malfertheiner P, Friess H, et al. A multicenter, phase II study of infliximab plus gemcitabine in pancreatic cancer cachexia. J Support Oncol. 2008;6:18–25.

    CAS  PubMed  Google Scholar 

  137. Jatoi A, Ritter HL, Dueck A, et al. A placebo-controlled, double-blind trial of infliximab for cancer-associated weight loss in elderly and/or poor performance non-small cell lung cancer patients (N01C9). Lung Cancer. 2010;68:234–9. https://doi.org/10.1016/j.lungcan.2009.06.020.

    Article  PubMed  Google Scholar 

  138. Miyamoto Y, Hanna DL, Zhang W, Baba H, Lenz H-J. Molecular pathways: cachexia signaling-a targeted approach to cancer treatment. Clin Cancer Res. 2016;22:3999–4004. https://doi.org/10.1158/1078-0432.ccr-16-0495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KCH. Cancer-associated cachexia. Nat Rev Dis Primer. 2018;4:17105. https://doi.org/10.1038/nrdp.2017.105.

    Article  Google Scholar 

  140. Argilés JM, López-Soriano FJ, Stemmler B, Busquets S. Therapeutic strategies against cancer cachexia. Eur J Transl Myol. 2019;29:7960–7960. https://doi.org/10.4081/ejtm.2019.7960.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Okoshi MP, Capalbo RV, Romeiro FG, Okoshi K. Cardiac cachexia: perspectives for prevention and treatment. Arq Bras Cardiol. 2017;108:74–80. https://doi.org/10.5935/abc.20160142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Del Fabbro E. Combination therapy in cachexia. Ann Palliat Med. 2018;8:59–66. https://doi.org/10.20137/apm.2018.08.05.

    Article  PubMed  Google Scholar 

  143. Berardi E, Madaro L, Lozanoska-Ochser B, Adamo S, Thorrez L, Bouche M, Coletti D. A pound of flesh: what cachexia is and what it is not. Diagnostics (Basel). 2021;11:116. https://doi.org/10.3390/diagnostics11010116.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by “Fundação para a Ciência e a Tecnologia”—FCT, European Union, QREN, FEDER and COMPETE for funding the LAQV-REQUIMTE (UIDB/50006/2020), UnIC (UIDB/IC/00051/2020 and UIDP/00051/2020), and CIAFEL (UIDB/00617/2020) research units, RISE – Health Research Network-From the Lab to the Community (LA/P/0053/2020), ITR—Laboratory for Integrative and Translational Research in Population Health (LA/P/0064/2020) and the research projects DOCnet (NORTE-01-0145-FEDER-000003), NETDIAMOND (SAICT-PAC/0047/2015), and PROTECT (PTDC/SAU-DES/7945/2020). Rita Nogueira-Ferreira acknowledges FCT for the research contract CEECIND/03935/2021 under the CEEC Individual 2021.

Author information

Authors and Affiliations

Authors

Contributions

Authors RNF, FSN, and LMS: performed the literature search and wrote the manuscript. RNF and RF: conceptualized the review. RF and DMG: wrote the first draft and edited the review. ALM, RV, and LLS: critically revised the work.

Corresponding authors

Correspondence to Rita Nogueira-Ferreira or Rita Ferreira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors contributed to the article and approved the submitted version.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 569 KB)

Supplementary file2 (XLS 520 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogueira-Ferreira, R., Sousa-Nunes, F., Leite-Moreira, A. et al. Cancer- and cardiac-induced cachexia: same fate through different inflammatory mediators?. Inflamm. Res. 71, 771–783 (2022). https://doi.org/10.1007/s00011-022-01586-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01586-y

Keywords

Navigation