Skip to main content

Advertisement

Log in

Bazedoxifene protects cerebral autoregulation after traumatic brain injury and attenuates impairments in blood–brain barrier damage: involvement of anti-inflammatory pathways by blocking MAPK signaling

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Traumatic brain injury (TBI) is a significant cause of death and long-term deficits in motor and cognitive functions for which there are currently no effective chemotherapeutic drugs. Bazedoxifene (BZA) is a third-generation selective estrogen receptor modulator (SERM) and has been investigated as a treatment for postmenopausal osteoporosis. It is generally safe and well tolerated, with favorable endometrial and breast safety profiles. Recent findings have shown that SERMs may have therapeutic benefits; however, the role of BZA in the treatment of TBI and its molecular and cellular mechanisms remain poorly understood. The aim of the present study was to examine the neuroprotective effects of BZA on early TBI in rats and to explore the underlying mechanisms of these effects.

Materials and methods

TBI was induced using a modified weight-drop method. Neurological deficits were evaluated according to the neurological severity score (NSS). Morris water maze and open-field behavioral tests were used to test cognitive functions. Brain edema was measured by brain water content, and impairments in the blood–brain barrier (BBB) were evaluated by expression analysis of tight junction-associated proteins, such as occludin and zonula occludens-1 (ZO-1). Neuronal injury was assessed by hematoxylin and eosin (H&E) staining. LC–MS/MS analysis was performed to determine the ability of BZA to cross the BBB.

Results

Our results indicated that BZA attenuated the impaired cognitive functions and the increased BBB permeability of rats subjected to TBI through activation of inflammatory cascades. In vivo experiments further revealed that BZA provided this neuroprotection by suppressing TBI-induced activation of the MAPK/NF-κB signaling pathway. Thus, mechanically, the anti-inflammatory effects of BZA in TBI may be partially mediated by blocking the MAPK signaling pathway.

Conclusions

These findings suggest that BZA might attenuate neurological deficits and BBB damage to protect against TBI by blocking the MAPK/NF-κB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood–brain barrier break down as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 2010;6:393–403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Li S, Zaninotto AL, Neville IS, Paiva WS, Nunn D, Fregni F. Clinical utility of brain stimulation modalities following traumatic brain injury: current evidence. Neuropsychiatr Dis Treat. 2015;11:1573–86.

    PubMed  PubMed Central  Google Scholar 

  3. Mustafa AG, Alshboul OA. Pathophysiology of traumatic brain injury. Neurosciences (Riyadh). 2013;18:222–34.

    Google Scholar 

  4. Moretti R, Pansiot J, Bettati D, Strazielle N, Ghersi-Egea JF, Damante G, Fleiss B, Titomanlio L, Gressens P. Blood–brain barrier dysfunction in disorders of the developing brain. Front Neurosci. 2015;9:40.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schwarzmaier SM, Plesnila N. Contributions of the immunesystem to the pathophysiology of traumatic brain injury-evidence by intravital microscopy. Front Cell Neurosci. 2014;8:358.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li H, Sun J, Wang F, Ding G, Chen W, Fang R, Yao Y, Pang M, Lu ZQ, Liu J. Sodium butyrate exerts neuroprotective effects by restoring the blood–brain barrier in traumatic brain injury mice. Brain Res. 2016;1642:70–8.

    Article  PubMed  CAS  Google Scholar 

  7. Blixt J, Svensson M, Gunnarson E, Wanecek M. Aquaporins and blood–brain barrier permeability in early edema development after traumatic brain injury. Brain Res. 2015;1611:18–28.

    Article  PubMed  CAS  Google Scholar 

  8. Shi H, Wang HL, Pu HJ, Shi YJ, Zhang J, Zhang WT, Wang GH, Hu XM, Leak RK, Chen J, Gao YQ. Ethyl pyruvate protects against blood–brain barrier damage and improves long-term neurological outcomes in a rat model of traumatic brain injury. CNS Neurosci Ther. 2015;21:374–84.

    Article  PubMed  CAS  Google Scholar 

  9. Wen J, Qian S, Yang Q, Deng L, Mo Y, Yu Y. Overexpression of netrin-1 increases the expression of tight junction-associated proteins, claudin-5, occludin, and ZO-1, following traumatic brain injury in rats. Exp Ther Med. 2014;8:881–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Alves JL. Blood–brain barrier and traumatic brain injury. J Neurosci Res. 2014;92:141–7.

    Article  PubMed  CAS  Google Scholar 

  11. Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonnière L, Bernard M, van Horssen J, de Vries HE, Charron F, Prat A. The Hedgehog pathway promotes blood–brain barrier integrity and CNS immune quiescence. Science. 2011;334:1727–31.

    Article  PubMed  CAS  Google Scholar 

  12. Brown GC, Neher JJ. Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol. 2010;41:242–7.

    Article  PubMed  CAS  Google Scholar 

  13. Ye L, Huang Y, Zhao L, Li Y, Sun L, Zhou Y, Qian G, Zheng JC. IL-1β and TNF-α induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase. J Neurochem. 2013;125:897–908.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bolton SJ, Anthony DC, Perry VH. Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood–brain barrier breakdown in vivo. Neuroscience. 1998;86:1245–57.

    Article  PubMed  CAS  Google Scholar 

  15. Rosenberg GA. Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol. 2009;8:205–16.

    Article  PubMed  CAS  Google Scholar 

  16. Rahman A, Fazal F. Blocking NF-κB: an inflammatory issue. Proc Am Thorac Soc. 2011;8:497–503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Karin M, Yamamoto Y, Wang QM. The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov. 2004;3:17–26.

    Article  PubMed  CAS  Google Scholar 

  18. Nadler Y, Alexandrovich A, Grigoriadis N, Hartmann T, Rao KS, Shohami E, Stein R. Increased expression of the gamma-secretase components presenilin-1 and nicastrin in activated astrocytes and microglia following traumatic brain injury. Glia. 2008;56:552–67.

    Article  PubMed  Google Scholar 

  19. Zhang ZY, Zhang Z, Fauser U, Schluesener HJ. Global hypomethylation defines a sub-population of reactive microglia/macrophages in experimental traumatic brain injury. Neurosci Lett. 2007;429:1–6.

    Article  PubMed  CAS  Google Scholar 

  20. Ralay Ranaivo H, Wainwright MS. Albumin activates astrocytes and microglia through mitogen-activated protein kinase pathways. Brain Res. 2010;1313:222–31.

    Article  PubMed  CAS  Google Scholar 

  21. Xie N, Wang C, Lin Y, Li H, Chen L, Zhang T, Sun Y, Zhang Y, Yin D, Chi Z. The role of p38 MAPK in valproic acid induced microglia apoptosis. Neurosci Lett. 2010;482:51–6.

    Article  PubMed  CAS  Google Scholar 

  22. Chung TW, Moon SK, Chang YC, Ko JH, Lee YC, Cho G, Kim SH, Kim JG, Kim CH. Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism. FASEB J. 2004;18:1670–81.

    Article  PubMed  CAS  Google Scholar 

  23. Shelly W, Draper MW, Krishnan V, Wong M, Jaffe RB. Selective estrogen receptor modulators: an update on recent clinical findings. Obstet Gynecol Surv. 2008;63:163–81.

    PubMed  Google Scholar 

  24. Gatti D, Rossini M, Sblendorio I, Lello S. Pharmacokinetic evaluation of bazedoxifene for the treatment of osteoporosis. Expert Opin Drug Metab Toxicol. 2013;9:883–92.

    Article  PubMed  CAS  Google Scholar 

  25. Palacios S. Third generation SERMs: anything new? Maturitas. 2010;67:101–2.

    Article  PubMed  Google Scholar 

  26. Komm BS, Kharode YP, Bodine PV, Harris HA, Miller CP, Lyttle CR. Bazedoxifene acetate: a selective estrogen receptor modulator with improved selectivity. Endocrinology. 2005;146:3999–4008.

    Article  PubMed  CAS  Google Scholar 

  27. Komm BS, Lyttle CR. Developing a SERM: stringent preclinical selection criteria leading to an acceptable candidate (WAY-140424) for clinical evaluation. Ann N Y Acad Sci. 2001;949:317–26.

    Article  PubMed  CAS  Google Scholar 

  28. Roof RL, Duvdevani R, Heyburn JW, Stein DG. Progesterone rapidly decreases brain edema: treatment delayed up to 24 hours is still effective. Exp Neurol. 1996;138:246–51.

    Article  PubMed  CAS  Google Scholar 

  29. Baskin YK1, Dietrich WD, Green EJ. Two effective behavioral tasks for evaluating sensorimotor dysfunction following traumatic brain injury in mice. J Neurosci Methods. 2003;129:87–93.

    Article  PubMed  Google Scholar 

  30. García-Rivera D, Delgado R, Bougarne N, Haegeman G, Berghe WV. Gallic acid indanone and mangiferin xanthone are strong determinants of immunosuppressive anti-tumour effects of Mangifera indica L. bark in MDA-MB231 breast cancer cells. Cancer Lett. 2011;305:21–31.

    Article  PubMed  CAS  Google Scholar 

  31. Kim HN, Kim DH, Kim EH, Lee MH, Kundu JK, Na HK, Cha YN, Surh YJ. Sulforaphane inhibits phorbol ester-stimulated IKK-NF-κB signaling and COX-2 expression inhuman mammary epithelial cells by targeting NF-κB activating kinase and ERK. Cancer Lett. 2014;351:41–9.

    Article  PubMed  CAS  Google Scholar 

  32. Abbott NJ. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013;36:437–49.

    Article  PubMed  CAS  Google Scholar 

  33. Diaz-Arrastia R, Kochanek PM, Bergold P, Kenney K, Marx CE, Grimes CJ, Loh LT, Adam LT, Oskvig D, Curley KC, Salzer W. Pharmacotherapy of traumatic brain injury: state of the science and the road forward: report of the Department of Defense Neurotrauma Pharmacology Workgroup. J Neurotrauma. 2014;31:135–58.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kokiko ON, Murashov AK, Hoane MR. Administration of raloxifene reduces sensorimotor and working memory deficits following traumatic brain injury. Behav Brain Res. 2006;170:233–40.

    Article  PubMed  CAS  Google Scholar 

  35. Raghava N, Das BC, Ray SK. Neuroprotective effects of estrogen in CNS injuries: insights from animal models. Neurosci Neuroecon. 2017;6:15–29.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chakrabarti M, Haque A, Banik NL, Nagarkatti P, Nagarkatti M, Ray SK. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration. Brain Res Bull. 2014;109:22–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ray SK, Samntaray S, Banik NL. Future directions for using estrogen receptor agonists in the treatment of acute and chronic spinal cord injury. Neural Regen Res. 2016;11:1418–9.

    PubMed  PubMed Central  Google Scholar 

  38. Soustiel JF, Palzur E, Nevo O, Thaler I, Vlodavsky E. Neuroprotective anti-apoptosis effect of estrogens in traumatic brain injury. J Neurotrauma. 2005;22:345–52.

    Article  PubMed  Google Scholar 

  39. Lim SW, Nyam Tt E, Hu CY, Chio CC, Wang CC, Kuo JR. Estrogen receptor-α is involved in tamoxifen neuroprotective effects in a traumatic brain injury male rat model. World Neurosurg. 2018;112:e278–87.

    Article  PubMed  Google Scholar 

  40. Tsai YT, Wang CC, Leung PO, Lin KC, Chio CC, Hu CY, Kuo JR. Extracellular signal-regulated kinase 1/2 is involved in a tamoxifen neuroprotective effect in a lateral fluid percussion injury rat model. J Surg Res. 2014;189:106–16.

    Article  PubMed  CAS  Google Scholar 

  41. Archer DF, Pinkerton JV, Utian WH, Menegoci JC, de Villiers TJ, Yuen CK, Levine AB, Chines AA, Constantine GD. Constantine, Bazedoxifene, a selective estrogen receptor modulator: effects on the endometrium, ovaries, and breast from a randomized controlled trial in osteoporotic postmenopausal women. Menopause. 2009;16:1109–15.

    Article  PubMed  Google Scholar 

  42. Kanis JA, Johansson H, Oden A, McCloskey EV. Bazedoxifene reduces vertebral and clinical fractures in postmenopausal women at high risk assessed with FRAX. Bone. 2009;44:1049–54.

    Article  PubMed  CAS  Google Scholar 

  43. Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood–brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res. 2011;2:492–516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Higashida T, Kreipke CW, Rafols JA, Peng C, Schafer S, Schafer P, Ding JY, Dornbos D 3rd, Li X, Guthikonda M, Rossi NF, Ding Y. The role of hypoxia-inducible factor-1alpha, aquaporin-4, and matrix metalloproteinase-9 in blood–brain barrier disruption and braine dema aftertraumatic brain injury. J Neurosurg. 2011;114:92–101.

    Article  PubMed  CAS  Google Scholar 

  45. Zhao YZ, Zhang M, Liu HF1. Wang JP1. Progesterone is neuroprotective by inhibiting cerebral edema after ischemia. Neural Regen Res. 2015;10:1076–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 2010;1802:396–405.

    Article  PubMed  CAS  Google Scholar 

  47. Chen T, Liu W, Chao X, Qu Y, Zhang L, Luo P, Xie K, Huo J, Fei Z. Neuroprotective effect of osthole against oxygen and glucose deprivation in rat cortical neurons: involvement of mitogen-activated protein kinase pathway. Neuroscience. 2011;183:203–11.

    Article  PubMed  CAS  Google Scholar 

  48. Chen T, Cao L, Dong W, Luo P, Liu W, Qu Y, Fei Z. Protective effects of mGluR5 positive modulators against traumatic neuronal injury through PKC-dependent activation of MEK/ERK pathway. Neurochem Res. 2012;37:983–90.

    Article  PubMed  CAS  Google Scholar 

  49. Drean A, Goldwirt L, Verreault M. Blood–brain barrier, cytotoxic chemotherapies and glioblastoma. Expert Rev Neurother. 2016;16:1285–300.

    Article  PubMed  CAS  Google Scholar 

  50. Lin JH. CSF as a surrogate for assessing CNS exposure: an industrial perspective. Curr Drug Metab. 2008;9:46–59.

    Article  PubMed  CAS  Google Scholar 

  51. Corrigan JD, Hammond FM. Traumatic brain injury as a chronic health condition. Arch Phys Med Rehabil. 2013;94:1199–201.

    Article  PubMed  Google Scholar 

  52. Colantonio A. Sex. Gender, and traumatic brain injury: a commentary. Arch Phys Med Rehabil. 2016;97:1–4.

    Article  Google Scholar 

  53. Saverino C, Swaine B, Jaglal S, Lewko J, Vernich L, Voth J, Calzavara A, Colantonio A. Rehospitalization after traumatic brain injury: a population-based study. Arch Phys Med Rehabil. 2016;97:19–25.

    Article  Google Scholar 

  54. Suzuki T, Bramlett HM, Dietrich WD. The importance of gender on the beneficial effects of posttraumatic hypothermia. Exp Neurol. 2003;184:1017–26.

    Article  PubMed  Google Scholar 

  55. Wagner AK, Kline AE, Ren D, Willard LA, Wenger MK, Zafonte RD, Dixon CE. Gender associations with chronic methylphenidate treatment and behavioral performance following experimental traumatic brain injury. Behav Brain Res. 2007;181:200–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from National Natural Science Foundation of China (nos. 81372714, 81672480), Liaoning Provincial Natural Science Foundation of China (no. 201602244), Distinguished Professor Project of Liaoning Province, Special Grant for Translational Medicine, Dalian Medical University (no. 2015002), Basic research projects in colleges and universities of Liaoning Province (no. LQ2017033).

Funding

This work is supported by grants from National Natural Science Foundation of China (nos. 81372714, 81672480), Liaoning Provincial Natural Science Foundation of China (no. 201602244), Distinguished Professor Project of Liaoning Province, Special Grant for Translational Medicine, Dalian Medical University (no. 2015002), Basic research projects in colleges and universities of Liaoning Province (no. LQ2017033).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, YLL; Funding acquisition, BZ; Investigation, YLL, XW, YJZ, JSX, JCL, and SZ; Methodology, YLL and XW; Writing-original draft, YLL; Writing-review and editing, YLL, XW, JCLL, JSX, SZ, BBM, YD, and BZ.

Corresponding author

Correspondence to Bo Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Responsible Editor: Thiago Mattar Cunha.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, YL., Wang, X., Zou, YJ. et al. Bazedoxifene protects cerebral autoregulation after traumatic brain injury and attenuates impairments in blood–brain barrier damage: involvement of anti-inflammatory pathways by blocking MAPK signaling. Inflamm. Res. 68, 311–323 (2019). https://doi.org/10.1007/s00011-019-01217-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-019-01217-z

Keywords

Navigation