Skip to main content
Log in

Activation of GPER-1 Attenuates Traumatic Brain Injury-Induced Neurological Impairments in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effects of G1-activated G protein-coupled estrogen receptor 1 (GPER1) on neurological impairments and neuroinflammation in traumatic brain injury (TBI) mice. The controlled cortical impingement (CCI) method was used to establish the TBI model. The mice were subjected to ovariectomy (OVX) for two weeks prior to modeling. GPER1 agonist G1 was administered by intracerebroventricular injection. Brain tissue water content was detected by wet/dry method, and blood-brain barrier damage was detected by Evans blue extravasation. The neurological impairments in mice were evaluated by open field test, Y-maze test, nest-building test, object location memory test and novel object recognition test. Ionized calcium-binding adapter molecule 1 (Iba1) staining was used to indicate the activation of microglia. Expression of M1/M2-type microglia markers and inflammatory factors were evaluated by ELISA and qRT-PCR. The G1 administration significantly reduced cerebral edema and Evans blue extravasation at injury ipsilateral cortex and basal ganglia in TBI mice. Activation of GPER1 by G1 improved the anxiety behavior and the cognitive dysfunction of mice induced by TBI. G1 administration significantly decreased Iba1-positive staining cells and the mRNA levels of CD86, macrophage cationic peptide 1 (Mcp-1), nitric oxide synthase 2 (Nos2), interleukin 1 beta (IL-1β), and macrophage inflammatory protein-2 (MIP-2), while increased the mRNA levels of interleukin 10 (IL-10), arginase1 (Arg-1) and CD206. Activation of GPER1 through G1 administration has the potential to ameliorate cognitive dysfunction induced by TBI in mice. It may also inhibit the activation of M1 microglia in cortical tissue resulting from TBI, while promoting the activation of M2 microglia and contributing to the regulation of inflammatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The raw data supporting the conclusions of this article will be made available on request to the corresponding author by email, as requested by our department.

References

  1. Vella MA, Crandall ML, Patel MB (2017) Acute management of traumatic brain injury. Surg Clin North Am 97(5):1015–1030. https://doi.org/10.1016/j.suc.2017.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  2. Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao LR (2017) Traumatic brain injury: current treatment strategies and future endeavors. Cell Transpl 26(7):1118–1130. https://doi.org/10.1177/0963689717714102

    Article  Google Scholar 

  3. Khellaf A, Khan DZ, Helmy A (2019) Recent advances in traumatic brain injury. J Neurol 266(11):2878–2889. https://doi.org/10.1007/s00415-019-09541-4

    Article  PubMed  PubMed Central  Google Scholar 

  4. Capizzi A, Woo J, Verduzco-Gutierrez M (2020) Traumatic brain injury: an overview of epidemiology, pathophysiology, and medical management. Med Clin North Am 104(2):213–238. https://doi.org/10.1016/j.mcna.2019.11.001

    Article  PubMed  Google Scholar 

  5. Wang KK, Yang Z, Zhu T, Shi Y, Rubenstein R, Tyndall JA, Manley GT (2018) An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn 18(2):165–180. https://doi.org/10.1080/14737159.2018.1428089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McGinn MJ, Povlishock JT (2016) Pathophysiology of traumatic brain injury. Neurosurg Clin N Am 27(4):397–407. https://doi.org/10.1016/j.nec.2016.06.002

    Article  PubMed  Google Scholar 

  7. Witcher KG, Bray CE, Chunchai T, Zhao F, O’Neil SM, Gordillo AJ, Campbell WA, McKim DB, Liu X, Dziabis JE, Quan N, Eiferman DS, Fischer AJ, Kokiko-Cochran ON, Askwith C, Godbout JP (2021) Traumatic brain injury causes chronic cortical inflammation and neuronal dysfunction mediated by microglia. J Neurosci 41(7):1597–1616. https://doi.org/10.1523/JNEUROSCI.2469-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Karve IP, Taylor JM, Crack PJ (2016) The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol 173(4):692–702. https://doi.org/10.1111/bph.13125

    Article  CAS  PubMed  Google Scholar 

  9. Wu H, Zheng J, Xu S, Fang Y, Wu Y, Zeng J, Shao A, Shi L, Lu J, Mei S, Wang X, Guo X, Wang Y, Zhao Z, Zhang J (2021) Mer regulates microglial/macrophage M1/M2 polarization and alleviates neuroinflammation following traumatic brain injury. J Neuroinflammation 18(1):2. https://doi.org/10.1186/s12974-020-02041-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Honjoh K, Nakajima H, Hirai T, Watanabe S, Matsumine A (2019) Relationship of inflammatory cytokines from M1-Type microglia/macrophages at the injured site and lumbar enlargement with neuropathic pain after spinal cord injury in the CCL21 knockout (plt) mouse. Front Cell Neurosci 13:525. https://doi.org/10.3389/fncel.2019.00525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang J, Zhao Y, Zhang L, Fan H, Qi C, Zhang K, Liu X, Fei L, Chen S, Wang M, Kuang F, Wang Y, Wu S (2018) RIPK3/MLKL-Mediated neuronal necroptosis modulates the M1/M2 polarization of microglia/macrophages in the ischemic cortex. Cereb Cortex 28(7):2622–2635. https://doi.org/10.1093/cercor/bhy089

    Article  PubMed  PubMed Central  Google Scholar 

  12. Prossnitz ER, Barton M (2011) The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol 7(12):715–726. https://doi.org/10.1038/nrendo.2011.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brailoiu E, Dun SL, Brailoiu GC, Mizuo K, Sklar LA, Oprea TI, Prossnitz ER, Dun NJ (2007) Distribution and characterization of estrogen receptor G protein-coupled receptor 30 in the rat central nervous system. J Endocrinol 193(2):311–321. https://doi.org/10.1677/JOE-07-0017

    Article  CAS  PubMed  Google Scholar 

  14. Hazell GG, Yao ST, Roper JA, Prossnitz ER, O’Carroll AM, Lolait SJ (2009) Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues. J Endocrinol 202(2):223–236. https://doi.org/10.1677/JOE-09-0066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tang H, Zhang Q, Yang L, Dong Y, Khan M, Yang F, Brann DW, Wang R (2014) GPR30 mediates estrogen rapid signaling and neuroprotection. Mol Cell Endocrinol 387(1–2):52–58. https://doi.org/10.1016/j.mce.2014.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Day NL, Floyd CL, D’Alessandro TL, Hubbard WJ, Chaudry IH (2013) 17beta-estradiol confers protection after traumatic brain injury in the rat and involves activation of G protein-coupled estrogen receptor 1. J Neurotrauma 30(17):1531–1541. https://doi.org/10.1089/neu.2013.2854

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lu D, Qu Y, Shi F, Feng D, Tao K, Gao G, He S, Zhao T (2016) Activation of G protein-coupled estrogen receptor 1 (GPER-1) ameliorates blood-brain barrier permeability after global cerebral ischemia in ovariectomized rats. Biochem Biophys Res Commun 477(2):209–214. https://doi.org/10.1016/j.bbrc.2016.06.044

    Article  CAS  PubMed  Google Scholar 

  18. Pu H, Ma C, Zhao Y, Wang Y, Zhang W, Miao W, Yu F, Hu X, Shi Y, Leak RK, Hitchens TK, Dixon CE, Bennett MV, Chen J (2021) Intranasal delivery of interleukin-4 attenuates chronic cognitive deficits via beneficial microglial responses in experimental traumatic brain injury. J Cereb Blood Flow Metab 41(11):2870–2886. https://doi.org/10.1177/0271678X211028680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen P, Wang C, Ren YN, Ye ZJ, Jiang C, Wu ZB (2021) Alterations in the gut microbiota and metabolite profiles in the context of neuropathic pain. Mol Brain 14(1):50. https://doi.org/10.1186/s13041-021-00765-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pan MX, Tang JC, Liu R, Feng YG, Wan Q (2018) Effects of estrogen receptor GPR30 agonist G1 on neuronal apoptosis and microglia polarization in traumatic brain injury rats. Chin J Traumatol 21(4):224–228. https://doi.org/10.1016/j.cjtee.2018.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kozler P, Maresova D, Pokorny J (2022) Determination of brain water content by dry/wet weight measurement for the detection of experimental brain edema. Physiol Res 71(S2):S277–S283. https://doi.org/10.33549/physiolres.934996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu Y, He Q, Wang M, Wang X, Gong F, Bai L, Zhang J, Wang W (2019) Quantifying blood-brain-barrier leakage using a combination of evans blue and high molecular weight FITC-Dextran. J Neurosci Methods 325:108349. https://doi.org/10.1016/j.jneumeth.2019.108349

    Article  CAS  PubMed  Google Scholar 

  23. Hayashi K, Hasegawa Y, Takemoto Y, Cao C, Mukasa A, Kim-Mitsuyama S (2020) Enhanced oxidative stress contributes to worse prognosis and delayed neurofunctional recovery after striatal intracerebral hemorrhage in 5XFAD mice. Eur J Neurosci 51(8):1806–1814. https://doi.org/10.1111/ejn.14596

    Article  PubMed  Google Scholar 

  24. Yoshizaki K, Asai M, Hara T (2020) High-fat diet enhances working memory in the Y-maze test in male C57BL/6J mice with less anxiety in the elevated plus maze test. Nutrients 12(7). https://doi.org/10.3390/nu12072036

  25. Yuan D, Liu C, Wu J, Hu B (2018) Nest-building activity as a reproducible and long-term stroke deficit test in a mouse model of stroke. Brain Behav 8(6):e00993. https://doi.org/10.1002/brb3.993

    Article  PubMed  PubMed Central  Google Scholar 

  26. Weiss C, Bertolino N, Procissi D, Aleppo G, Smith QC, Viola KL, Bartley SC, Klein WL, Disterhoft JF (2022) Diet-induced Alzheimer’s-like syndrome in the rabbit. Alzheimers Dement (N Y) 8(1):e12241. https://doi.org/10.1002/trc2.12241

    Article  PubMed  Google Scholar 

  27. Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13(2):93–110. https://doi.org/10.1007/s10339-011-0430-z

    Article  CAS  PubMed  Google Scholar 

  28. Hendrickx DAE, van Eden CG, Schuurman KG, Hamann J, Huitinga I (2017) Staining of HLA-DR, Iba1 and CD68 in human microglia reveals partially overlapping expression depending on cellular morphology and pathology. J Neuroimmunol 309:12–22. https://doi.org/10.1016/j.jneuroim.2017.04.007

    Article  CAS  PubMed  Google Scholar 

  29. Robinson CP (2021) Moderate and severe traumatic brain injury. Continuum (Minneap Minn) 27(5):1278–1300. https://doi.org/10.1212/CON.0000000000001036

    Article  PubMed  Google Scholar 

  30. Leikin JB (2019) Traumatic brain injury. Dis Mon 65(10):100857. https://doi.org/10.1016/j.disamonth.2019.02.010

    Article  PubMed  Google Scholar 

  31. Baxendale S, Heaney D, Rugg-Gunn F, Friedland D (2019) Neuropsychological outcomes following traumatic brain injury. Pract Neurol 19(6):476–482. https://doi.org/10.1136/practneurol-2018-002113

    Article  PubMed  Google Scholar 

  32. Appelros P, Stegmayr B, Terent A (2009) Sex differences in stroke epidemiology: a systematic review. Stroke 40(4):1082–1090. https://doi.org/10.1161/STROKEAHA.108.540781

    Article  PubMed  Google Scholar 

  33. Santoro A, Mele E, Marino M, Viggiano A, Nori SL, Meccariello R (2021) The complex interplay between endocannabinoid system and the estrogen system in central nervous system and periphery. Int J Mol Sci 22(2). https://doi.org/10.3390/ijms22020972

  34. McEwen BS, Alves SE (1999) Estrogen actions in the central nervous system. Endocr Rev 20(3):279–307. https://doi.org/10.1210/edrv.20.3.0365

    Article  CAS  PubMed  Google Scholar 

  35. Bruce-Keller AJ, Keeling JL, Keller JN, Huang FF, Camondola S, Mattson MP (2000) Antiinflammatory effects of estrogen on microglial activation. Endocrinology 141(10):3646–3656. https://doi.org/10.1210/endo.141.10.7693

    Article  CAS  PubMed  Google Scholar 

  36. Dimayuga FO, Reed JL, Carnero GA, Wang C, Dimayuga ER, Dimayuga VM, Perger A, Wilson ME, Keller JN, Bruce-Keller AJ (2005) Estrogen and brain inflammation: effects on microglial expression of MHC, costimulatory molecules and cytokines. J Neuroimmunol 161(1–2):123–136. https://doi.org/10.1016/j.jneuroim.2004.12.016

    Article  CAS  PubMed  Google Scholar 

  37. Zhao TZ, Ding Q, Hu J, He SM, Shi F, Ma LT (2016) GPER expressed on microglia mediates the anti-inflammatory effect of estradiol in ischemic stroke. Brain Behav 6(4):e00449. https://doi.org/10.1002/brb3.449

    Article  PubMed  PubMed Central  Google Scholar 

  38. Guan J, Yang B, Fan Y, Zhang J (2017) GPER Agonist G1 attenuates neuroinflammation and dopaminergic neurodegeneration in Parkinson disease. Neuroimmunomodulation 24(1):60–66. https://doi.org/10.1159/000478908

    Article  CAS  PubMed  Google Scholar 

  39. Broughton BR, Brait VH, Kim HA, Lee S, Chu HX, Gardiner-Mann CV, Guida E, Evans MA, Miller AA, Arumugam TV, Drummond GR, Sobey CG (2014) Sex-dependent effects of G protein-coupled estrogen receptor activity on outcome after ischemic stroke. Stroke 45(3):835–841. https://doi.org/10.1161/STROKEAHA.113.001499

    Article  CAS  PubMed  Google Scholar 

  40. Wu Y, Feng D, Lin J, Qu Y, He S, Wang Y, Gao G, Zhao T (2018) Downregulation of G–protein–coupled receptor 30 in the hippocampus attenuates the neuroprotection of estrogen in the critical period hypothesis. Mol Med Rep 17(4):5716–5725. https://doi.org/10.3892/mmr.2018.8618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kastenberger I, Schwarzer C (2014) GPER1 (GPR30) knockout mice display reduced anxiety and altered stress response in a sex and paradigm dependent manner. Horm Behav 66(4):628–636. https://doi.org/10.1016/j.yhbeh.2014.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kajta M, Wnuk A, Rzemieniec J, Litwa E, Lason W, Zelek-Molik A, Nalepa I, Rogoz Z, Grochowalski A, Wojtowicz AK (2017) Depressive-like effect of prenatal exposure to DDT involves global DNA hypomethylation and impairment of GPER1/ESR1 protein levels but not ESR2 and AHR/ARNT signaling. J Steroid Biochem Mol Biol 171:94–109. https://doi.org/10.1016/j.jsbmb.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  43. Dovey JL, Vasudevan N (2020) Does GPER1 play a role in sexual dimorphism? Front Endocrinol (Lausanne) 11:595895. https://doi.org/10.3389/fendo.2020.595895

    Article  PubMed  Google Scholar 

  44. Sharma G, Prossnitz ER (2017) G-Protein-coupled estrogen receptor (GPER) and sex-specific metabolic homeostasis. Adv Exp Med Biol 1043:427–453. https://doi.org/10.1007/978-3-319-70178-3_20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blaya MO, Raval AP, Bramlett HM (2022) Traumatic brain injury in women across lifespan. Neurobiol Dis 164:105613. https://doi.org/10.1016/j.nbd.2022.105613

    Article  PubMed  Google Scholar 

  46. Caplan HW, Cox CS, Bedi SS (2017) Do microglia play a role in sex differences in TBI? J Neurosci Res 95(1–2):509–517. https://doi.org/10.1002/jnr.23854

    Article  CAS  PubMed  Google Scholar 

  47. Frost RB, Farrer TJ, Primosch M, Hedges DW (2013) Prevalence of traumatic brain injury in the general adult population: a meta-analysis. Neuroepidemiology 40(3):154–159. https://doi.org/10.1159/000343275

    Article  PubMed  Google Scholar 

  48. Li Y, Yang YY, Ren JL, Xu F, Chen FM, Li A (2017) Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats. Stem Cell Res Ther 8(1):198. https://doi.org/10.1186/s13287-017-0648-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yao X, Liu S, Ding W, Yue P, Jiang Q, Zhao M, Hu F, Zhang H (2017) TLR4 signal ablation attenuated neurological deficits by regulating microglial M1/M2 phenotype after traumatic brain injury in mice. J Neuroimmunol 310:38–45. https://doi.org/10.1016/j.jneuroim.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  50. Gao T, Chen Z, Chen H, Yuan H, Wang Y, Peng X, Wei C, Yang J, Xu C (2018) Inhibition of HMGB1 mediates neuroprotection of traumatic brain injury by modulating the microglia/macrophage polarization. Biochem Biophys Res Commun 497(1):430–436. https://doi.org/10.1016/j.bbrc.2018.02.102

    Article  CAS  PubMed  Google Scholar 

  51. Jiang Z, Tang M (2020) Inflammatory events drive neural stem cell migration by elevating stromal-derived factor 1 alpha. STEMedicine 1(3):e59. https://doi.org/10.37175/stemedicine.v1i3.59

    Article  Google Scholar 

  52. Zheng Y, Wu M, Gao T, Meng L, Ding X, Meng Y, Jiao Y, Luo P, He Z, Sun T, Zhang G, Shi X, Rong W (2020) GPER-deficient rats exhibit lower serum corticosterone level and increased anxiety-like behavior. Neural Plast 2020:8866187. https://doi.org/10.1155/2020/8866187

  53. Bian C, Zhu H, Zhao Y, Cai W, Zhang J (2014) Intriguing roles of hippocampus-synthesized 17beta-estradiol in the modulation of hippocampal synaptic plasticity. J Mol Neurosci 54(2):271–281. https://doi.org/10.1007/s12031-014-0285-8

    Article  CAS  PubMed  Google Scholar 

  54. Hawley WR, Grissom EM, Moody NM, Dohanich GP, Vasudevan N (2014) Activation of G-protein-coupled receptor 30 is sufficient to enhance spatial recognition memory in ovariectomized rats. Behav Brain Res 262:68–73. https://doi.org/10.1016/j.bbr.2014.01.006

    Article  CAS  PubMed  Google Scholar 

  55. Wang ZF, Pan ZY, Xu CS, Li ZQ (2017) Activation of G-protein coupled estrogen receptor 1 improves early-onset cognitive impairment via PI3K/Akt pathway in rats with traumatic brain injury. Biochem Biophys Res Commun 482(4):948–953. https://doi.org/10.1016/j.bbrc.2016.11.138

    Article  CAS  PubMed  Google Scholar 

  56. Ervin KS, Mulvale E, Gallagher N, Roussel V, Choleris E (2015) Activation of the G protein-coupled estrogen receptor, but not estrogen receptor alpha or beta, rapidly enhances social learning. Psychoneuroendocrinology 58:51–66. https://doi.org/10.1016/j.psyneuen.2015.04.002

    Article  CAS  PubMed  Google Scholar 

  57. Gabor C, Lymer J, Phan A, Choleris E (2015) Rapid effects of the G-protein coupled oestrogen receptor (GPER) on learning and dorsal hippocampus dendritic spines in female mice. Physiol Behav 149:53–60. https://doi.org/10.1016/j.physbeh.2015.05.017

    Article  CAS  PubMed  Google Scholar 

  58. Pisani SL, Neese SL, Doerge DR, Helferich WG, Schantz SL, Korol DL (2012) Acute genistein treatment mimics the effects of estradiol by enhancing place learning and impairing response learning in young adult female rats. Horm Behav 62(4):491–499. https://doi.org/10.1016/j.yhbeh.2012.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hadjimarkou MM, Vasudevan N (2018) GPER1/GPR30 in the brain: crosstalk with classical estrogen receptors and implications for behavior. J Steroid Biochem Mol Biol 176:57–64. https://doi.org/10.1016/j.jsbmb.2017.04.012

    Article  CAS  PubMed  Google Scholar 

  60. Waters EM, Thompson LI, Patel P, Gonzales AD, Ye HZ, Filardo EJ, Clegg DJ, Gorecka J, Akama KT, McEwen BS, Milner TA (2015) G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus. J Neurosci 35(6):2384–2397. https://doi.org/10.1523/JNEUROSCI.1298-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zuo D, Wang F, Rong W, Wen Y, Sun K, Zhao X, Ren X, He Z, Ding N, Ma L, Xu F (2020) The novel estrogen receptor GPER1 decreases epilepsy severity and susceptivity in the hippocampus after status epilepticus. Neurosci Lett 728:134978. https://doi.org/10.1016/j.neulet.2020.134978

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

This work was supported by the National Natural Science Foundation of China (no. 81971153, no. 81200902).

Author information

Authors and Affiliations

Authors

Contributions

Yafei Xue: Data curation, Conceptualization, Methodology, Writing- Original draft preparation, Investigation, Methodology, Writing- Original draft preparation, Writing- Reviewing and Editing. Yunze Zhang: Data curation, Validation, Writing- Original draft preparation. Yingxi Wu: Data curation, Writing- Original draft preparation. Tianzhi Zhao: Conceptualization, Writing- Original draft preparation, Supervision, Writing- Reviewing and Editing.

Corresponding authors

Correspondence to Yingxi Wu or Tianzhi Zhao.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Current study is available from the corresponding author on reasonable request.

Disclosure of Potential Conflicts of Interest

The authors declare that there is no conflict of interests.

Research Involving Human Participants and/or Animals

The animal study was approved by the ethics committee of Tangdu Hospital, Fourth Military Medical University. This study was performed in strict accordance with the NIH guidelines for the care and use of laboratory animals (NIH Publication No. 85 − 23 Rev. 1985).

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Zhang, Y., Wu, Y. et al. Activation of GPER-1 Attenuates Traumatic Brain Injury-Induced Neurological Impairments in Mice. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03919-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03919-w

Keywords

Navigation