Skip to main content

Advertisement

Log in

Estrogen Attenuates Traumatic Brain Injury by Inhibiting the Activation of Microglia and Astrocyte-Mediated Neuroinflammatory Responses

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI), which leads to high mortality and morbidity, is a prominent public health problem worldwide. Neuroinflammation involving microglia and astrocyte activation has been demonstrated to play critical role in the secondary injury induced by TBI. A1 astrocytes, which are induced by activated microglia, can directly kill neurons by secreting neurotoxic complement C3. Estrogen has been proved to possess neuroprotective effects, but the effect and underlying mechanism of estrogen on TBI-induced neuroinflammatory injury remain largely unclear. In this study, we constructed an adult male mouse model of TBI and immediately after injury treated the mice with 17β-estradiol (E2) (100 μg/kg, once every day via intraperitoneal injection) for 3 days. We found that E2 treatment significantly alleviated TBI-induced neurological deficits, neuronal injuries, and brain edema and significantly inhibited Iba1 and GFAP expression, which are markers of microglia and astrocyte activation, respectively. E2 treatment also significantly inhibited TLR4 and NF-κB protein expression, and significantly reduced the expression of the proinflammatory factors IL-1β, IL-6, and TNF-α. Moreover, E2 treatment significantly decreased the number of complement C3d/GFAP-positive cells and complement C3d protein expression. Taking these results together, we concluded that E2 treatment dramatically alleviates TBI neuroinflammatory injury by inhibiting TLR4/NF-κB pathway-mediated microglia and astrocyte activation and neuroinflammation and reducing A1-phenotype neurotoxic astrocyte activation. Our findings indicate that E2 treatment may be a potential therapy strategy for TBI-induced neuroinflammation injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Meaney DF, Morrison B, Dale Bass C (2014) The mechanics of traumatic brain injury: a review of what we know and what we need to know for reducing its societal burden. J Biomech Eng 136(2):021008

    PubMed  Google Scholar 

  2. Ng SY, Lee AYW (2019) Traumatic brain injuries: pathophysiology and potential therapeutic targets. Front Cell Neurosci 13:528

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rudolfson N, Dewan MC, Park KB, Shrime MG, Meara JG, Alkire BC (2018) The economic consequences of neurosurgical disease in low- and middle-income countries. J Neurosurg:1–8

  4. Dekmak AS, Mantash S, Shaito A et al (2018) Stem cells and combination therapy for the treatment of traumatic brain injury. Brain Res 340:49–62

    CAS  Google Scholar 

  5. Abdelmalik PA, Draghic N, Ling GSF (2019) Management of moderate and severe traumatic brain injury. Transfusion 59(S2):1529–1538

    PubMed  Google Scholar 

  6. Marder K, Sano M (2000) Estrogen to treat Alzheimer’s disease: too little, too late? So what’s a woman to do? Neurology 54(11):2035–2037

    CAS  PubMed  Google Scholar 

  7. Baraka AM, Korish AA, Soliman GA, Kamal H (2011) The possible role of estrogen and selective estrogen receptor modulators in a rat model of Parkinson’s disease. Life Sci 88(19–20):879–885

    CAS  PubMed  Google Scholar 

  8. Garcia-Segura LM, Azcoitia I, DonCarlos LL (2001) Neuroprotection by estradiol. Prog Neurobiol 63(1):29–60

    CAS  PubMed  Google Scholar 

  9. Lu H, Ma K, Jin L, Zhu H, Cao R (2018) 17β-estradiol rescues damages following traumatic brain injury from molecule to behavior in mice. J Cell Physiol 233(2):1712–1722

    CAS  PubMed  Google Scholar 

  10. Schaible EV, Windschügl J, Bobkiewicz W, Kaburov Y, Dangel L, Krämer T, Huang C, Sebastiani A et al (2014) 2-Methoxyestradiol confers neuroprotection and inhibits a maladaptive HIF-1α response after traumatic brain injury in mice. J Neurochem 129(6):940–954

    CAS  PubMed  Google Scholar 

  11. Hill CS, Coleman MP, Menon DK (2016) Traumatic axonal injury: mechanisms and translational opportunities. Trends Neurosci 39(5):311–324

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Walker KR, Tesco G (2013) Molecular mechanisms of cognitive dysfunction following traumatic brain injury. Front Aging Neurosci 5:29

    PubMed  PubMed Central  Google Scholar 

  13. Chakrabarti M, Das A, Samantaray S, Smith JA, Banik NL, Haque A, Ray SK (2016) Molecular mechanisms of estrogen for neuroprotection in spinal cord injury and traumatic brain injury. Rev Neurosci 27(3):271–281

    CAS  PubMed  Google Scholar 

  14. Burda JE, Bernstein AM, Sofroniew MV (2016) Astrocyte roles in traumatic brain injury. Exp Neurol 275 Pt 3(03):305–315

    Google Scholar 

  15. Karve IP, Taylor JM, Crack PJ (2016) The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol 173(4):692–702

    CAS  PubMed  Google Scholar 

  16. Loane DJ, Kumar A (2016) Microglia in the TBI brain: the good, the bad, and the dysregulated. Exp Neurol 275 Pt 3(0 3):316–327

    PubMed  Google Scholar 

  17. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Clark DPQ, Perreau VM, Shultz SR, Brady RD, Lei E, Dixit S, Taylor JM, Beart PM et al (2019) Inflammation in traumatic brain injury: roles for toxic A1 astrocytes and microglial-astrocytic crosstalk. Neurochem Res 44(6):1410–1424

    CAS  PubMed  Google Scholar 

  19. Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26(4):627–635

    CAS  PubMed  Google Scholar 

  20. Kovacs SK, Leonessa F, Ling GS (2014) Blast TBI models, neuropathology, and implications for seizure risk. Front Neurol 5:47

    PubMed  PubMed Central  Google Scholar 

  21. Sharp DJ, Scott G, Leech R (2014) Network dysfunction after traumatic brain injury. Nat Rev Neurol 10(3):156–166

    PubMed  Google Scholar 

  22. Maas AIR, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A, Bragge P, Brazinova A et al (2017) Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol 16(12):987–1048

    PubMed  Google Scholar 

  23. Martin-Jiménez C, Gaitán-Vaca DM, Areiza N, Echeverria V, Ashraf GM, González J, Sahebkar A, Garcia-Segura LM et al (2019) Astrocytes mediate protective actions of estrogenic compounds after traumatic brain injury. Neuroendocrinology 108(2):142–160

    PubMed  Google Scholar 

  24. Li Z, Dong X, Zhang J, Zeng G, Zhao H, Liu Y, Qiu R, Mo L et al (2014) Formononetin protects TBI rats against neurological lesions and the underlying mechanism. J Neurol Sci 338(1–2):112–117

    CAS  PubMed  Google Scholar 

  25. Feickert HJ, Drommer S, Heyer R (1999) Severe head injury in children: impact of risk factors on outcome. J Trauma 47(1):33–38

    CAS  PubMed  Google Scholar 

  26. Hajmohammadi M, Khaksari M, Soltani Z, Shahrokhi N, Najafipour Hand Abbasi R (2019) The effect of candesartan alone and its combination with estrogen on post-traumatic brain injury outcomes in female rats. Front Neurosci 13:1043

    PubMed  PubMed Central  Google Scholar 

  27. Bao YJ, Li LZ, Li XG, Wang YJ (2011) 17Beta-estradiol differentially protects cortical pericontusional zone from programmed cell death after traumatic cerebral contusion at distinct stages via non-genomic and genomic pathways. Mol Cell Neurosci 48(3):185–194

    CAS  PubMed  Google Scholar 

  28. McClean J, Nuñez JL (2008) 17alpha-estradiol is neuroprotective in male and female rats in a model of early brain injury. Exp Neurol 210(1):41–50

    CAS  PubMed  Google Scholar 

  29. Day NL, Floyd CL, D'Alessandro TL, Hubbard WJ, Chaudry IH (2013) 17β-estradiol confers protection after traumatic brain injury in the rat and involves activation of G protein-coupled estrogen receptor 1. J Neurotrauma 30(17):1531–1541

    PubMed  PubMed Central  Google Scholar 

  30. Corrigan F, Mander KA, Leonard AV, Vink R (2016) Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflammation 13(1):264

    PubMed  PubMed Central  Google Scholar 

  31. Corps KN, Roth TL, McGavern DB (2015) Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol 72(3):355–362

    PubMed  PubMed Central  Google Scholar 

  32. Wen L, You W, Wang H, Meng Y, Feng J, Yang X (2018) Polarization of microglia to the M2 phenotype in a peroxisome proliferator-activated receptor gamma-dependent manner attenuates axonal injury induced by traumatic brain injury in mice. J Neurotrauma 35(19):2330–2340

    PubMed  Google Scholar 

  33. Deng YL, Ma YL, Zhang ZL, Zhang LX, Guo H, Qin P, Hou YS, Gao ZJ et al (2018) Astrocytic N-Myc downstream-regulated Gene-2 is involved in nuclear transcription factor κB-mediated inflammation induced by global cerebral ischemia. Anesthesiology 128(3):574–586

    CAS  PubMed  Google Scholar 

  34. Gorina R, Font-Nieves M, Márquez-Kisinousky L, Santalucia T, Planas AM (2011) Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. Glia 59(2):242–255

    PubMed  Google Scholar 

  35. Yaşar P, Ayaz G, User SD, Güpür G, Muyan M (2016) Molecular mechanism of estrogen-estrogen receptor signaling. Reproduct Med Biol 16(1):4–20

    Google Scholar 

  36. Lee JY, Choi HY, Ju BG, Yune TY (2018) Estrogen alleviates neuropathic pain induced after spinal cord injury by inhibiting microglia and astrocyte activation. Biochim Biophys Acta Mol basis Dis 1864(7):2472–2480

    CAS  PubMed  Google Scholar 

  37. Zhang Z, Qin P, Deng Y, Ma Z, Guo H, Guo H, Hou Y, Wang S et al (2018) The novel estrogenic receptor GPR30 alleviates ischemic injury by inhibiting TLR4-mediated microglial inflammation. J Neuroinflammation 15(1):206

    PubMed  PubMed Central  Google Scholar 

  38. Guo H, Yang J, Liu M et al (1726) Selective activation of estrogen receptor β alleviates cerebral ischemia neuroinflammatory injury. Brain Res 2020:146536

  39. Yun SP, Kam TI, Panicker N, Kim SM, Oh Y, Park JS, Kwon SH, Park YJ et al (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med 24(7):931–938

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lian H, Yang L, Cole A, Sun L, Chiang ACA, Fowler SW, Shim DJ, Rodriguez-Rivera J et al (2015) NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron 85(1):101–115

    CAS  PubMed  Google Scholar 

  41. Choudhury GR, Ding S (2016) Reactive astrocytes and therapeutic potential in focal ischemic stroke. Neurobiol Dis 85:234–244

    PubMed  Google Scholar 

  42. Jha RM, Kochanek PM, Simard JM (2019) Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 145(Pt B):230–246

    CAS  PubMed  Google Scholar 

  43. Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14(4):265–277

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Oklinski MK, Lim JS, Choi HJ, Oklinska P, Skowronski MT, Kwon TH (2014) Immunolocalization of water channel proteins AQP1 and AQP4 in rat spinal cord. J Histochem Cytochem 62(8):598–611

    PubMed  Google Scholar 

  45. Rama Rao KV, Verkman AS, Curtis KM, Norenberg MD (2014) Aquaporin-4 deletion in mice reduces encephalopathy and brain edema in experimental acute liver failure. Neurobiol Dis 63:222–228

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (no.81801138, 81971226, 81771411), Key R & D projects in Shaanxi Province (no.2017ZDXMSF059), Defense Science and Technology project (no. 2019-JCJQ-JJ-089), The Beijing Natural Science Foundation (no.7194321).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yulong Ma or Wugang Hou.

Ethics declarations

Competing Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Hou, Y., Zhang, L. et al. Estrogen Attenuates Traumatic Brain Injury by Inhibiting the Activation of Microglia and Astrocyte-Mediated Neuroinflammatory Responses. Mol Neurobiol 58, 1052–1061 (2021). https://doi.org/10.1007/s12035-020-02171-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02171-2

Keywords

Navigation