1 Introduction

For \(\hbox {i}=1,2\) let \(\hbox {S}_{\mathrm{i}}\) be a set and let (\(\hbox {G}_{\mathrm{i}},+\)) be a groupoid. Let the function \(\hbox {F}_{\mathrm{i}}:\hbox {S}_{\mathrm{i}}\times \hbox {G}_{\mathrm{i}}\rightarrow \hbox {S}_{\mathrm{i}}\) be the solution of the translation equation, i.e., such that

$$\begin{aligned} \hbox {F}_{\mathrm{i}}(\hbox {F}_{\mathrm{i}}(\hbox {x},\hbox {t}_{1}),\hbox {t}_{2})=\hbox {F}_{\mathrm{i}}(\hbox {x},\hbox {t}_{1}+\hbox {t}_{2}) \hbox { for } \hbox {x}\upepsilon \hbox {S}_{\mathrm{i}},\hbox {t}_{1},\hbox {t}_{2}\upepsilon \hbox {G}_{\mathrm{i}} \quad \hbox { for } \hbox {i}=1,2. \end{aligned}$$

The equation

$$\begin{aligned} \hbox {f}[\hbox {F}_{1}(\hbox {x,t})]=\hbox {F}_{2}[\hbox {f(x),h(t)}]\quad \hbox { for } (\hbox {x,t})\upepsilon \hbox {S}_{1}\times \hbox {G}_{1}, \end{aligned}$$
(1)

where \(\hbox {f}:\hbox {S}_{1}\rightarrow \hbox {S}_{2}\) and h is a homomorphism from \(\hbox {G}_{1}\) to \(\hbox {G}_{2}\), is said to be the geometric concomitant equation.

This equation means that the diagram

figure a

is commutative.

If \(\hbox {G}_{1}=\hbox {G}_{2}\), \(\hbox {h}(\hbox {t})=\hbox {t}\) for \(\hbox {t}\upepsilon \hbox {G}_{1}\), \(\hbox {G}_{1}\) has the neutral element 0 and \(\hbox {F}_{\mathrm{i}}(\hbox {x},0)=\hbox {x}\) for \(\hbox {x}\upepsilon \hbox {S}_{\mathrm{i}}\), \(\hbox {i}=1,2\), then in the theory of geometric objects [1] the function \(\hbox {F}_{1}\) is the transformation law of the object x, f(x) is the concomitant of this object x [4] and \(\hbox {F}_{2}\) is the transformation law of the object f(x).

If f is a bijection, then \(\hbox {F}_{1}\) and \(\hbox {F}_{2}\) are said to be equivalent (e.g., in the theory of abstract automata [11]).

If G is a group, then \(\hbox {G/G}^{*}\) means the family of the right cosets of the group G for the subgroup \(\hbox {G}^{*}\) throughout the paper.

We have four functions in Eq. (1), thus there are four possibilities for the unknown function.

2 Unknown function f

Let \(\hbox {G}_{\mathrm{i}}\) be a group and let \(\hbox {F}_{\mathrm{i}}(\hbox {x},0)=\hbox {x}\) for \(\hbox {x}\upepsilon \hbox {S}_{\mathrm{i}}\) and \(\hbox {i}=1,2\). The solution \(\hbox {F}_{\mathrm{i}}\) of the translation equation has the form

$$\begin{aligned} \hbox {F}_{\mathrm{i}}(\hbox {x,t})= \text{ b }_{\mathrm{i}}^{-1} [\hbox {b}_{\mathrm{i}}(\hbox {x})+\hbox {t}] \quad \hbox { for } (\hbox {x,t})\upepsilon \hbox {S}_{\mathrm{i}}\times \hbox {G}_{\mathrm{i}}, \end{aligned}$$
(2)

where \(\hbox {b}_{\mathrm{i}}=\cup _{\mathrm{k}\upepsilon K_{i}} :\hbox {b}_{\mathrm{ik}}\), \(\hbox {S}_{\mathrm{i}}=\cup _{\mathrm{k}\upepsilon K_{i}} :\hbox {S}_{\mathrm{ik}}\), \(\hbox {S}_{\mathrm{ik}}\) for \(\hbox {k}\upepsilon \hbox {K}_{\mathrm{i}}\) are non-empty disjoint sets such that for every \(\hbox {k}\upepsilon \hbox {K}_{\mathrm{i}}\) there exists a subgroup \(\hbox {G}_{\mathrm{ik}}\) of the group \(\hbox {G}_{\mathrm{i}}\) for which \(\hbox {cardS}_{\mathrm{ik}}=\hbox {cardG}_{\mathrm{i}}/\hbox {G}_{\mathrm{ik}}\) and \(\hbox {b}_{\mathrm{ik}}:\hbox {S}_{\mathrm{ik}}\rightarrow \hbox {G}_{\mathrm{i}}/\hbox {G}_{\mathrm{ik}}\) is a bijection ([5, 7]).

From here the above function \(\hbox {F}_{\mathrm{i}}\) and the solution of the translation equation \(F_{i}(\hbox {u,t})= \hbox {u}+\hbox {t}:(\cup _{\mathrm{k}\upepsilon K_{i}} \hbox {G}_{\mathrm{i}}/\hbox {G}_{\mathrm{ik}})\times \hbox {G}_{\mathrm{i}}\rightarrow \cup _{\mathrm{k}\upepsilon K_{i}} \hbox {G}_{\mathrm{i}}/\hbox {G}_{\mathrm{ik}}\) are equivalent since \(\hbox {b}_{\mathrm{i}}(\hbox {F}_{\mathrm{i}}(\hbox {x,t}))=\hbox {b}_{\mathrm{i}}(\hbox {x})+\hbox {t}=F_{i}(\hbox {b}_{\mathrm{i}}(\hbox {x}),\hbox {t})\). This implies that the solution \(\hbox {F}:\hbox {S}\times \hbox {G} \rightarrow \hbox {S}\) such that G is a group and \(\hbox {F}(\hbox {s},0)=\hbox {s}\) for \(\hbox {s}\upepsilon \hbox {S}\) may be identified with the family of the right cosets of the group G.

Theorem 1

If \(\hbox {F}_{\mathrm{i}}\) are of the form (2), then a function \(\hbox {f}:\hbox {S}_{1}\rightarrow \hbox {S}_{2}\) is a solution of (1) if and only if there exist functions \(\upalpha :\hbox {K}_{1}\rightarrow \hbox {G}_{2}\) and \(\upbeta :\hbox {K}_{1}\rightarrow \hbox {K}_{2}\) such that

$$\begin{aligned} \hbox {h}(\hbox {G}_{\mathrm{1k}})\subset [-\upalpha (\hbox {k})+\hbox {G}_{2\upbeta (\mathrm{k})}+\upalpha (\hbox {k})] \,for\, \hbox {k}\upepsilon \hbox {K}_{1} \end{aligned}$$
(3)

and f is of the form \(\hbox {f}=\text{ b }_{2}^{-1} \upvarphi \hbox {b}_{1}\), where

$$\begin{aligned} \upvarphi (\hbox {C})=\upvarphi (\hbox {G}_{\mathrm{1k}}+\hbox {t})=\hbox {G}_{2\upbeta (\mathrm{k})}+\upalpha (\hbox {k})+\hbox {h}(\hbox {t}) \,for \,\hbox {C}=\hbox {G}_{\mathrm{1k}}+\hbox {t}\upepsilon \hbox {G}_{1}/\hbox {G}_{\mathrm{1k}}\,and\, \hbox {k}\upepsilon \hbox {K}_{1}.\nonumber \\ \end{aligned}$$
(4)

Proof

Note that the function \(\upvarphi \) defined in (4) is well-defined. In fact, if \(\hbox {G}_{\mathrm{1k}}+\hbox {t}_{1}=\hbox {G}_{\mathrm{1k}}+\hbox {t}_{2}\), then \(\hbox {t}_{2}\hbox {--}\hbox {t}_{1}\upepsilon \hbox {G}_{\mathrm{1k}}\), thus the function

$$\begin{aligned} \hbox {h}(\hbox {t}_{2}\hbox {--t}_{1})\upepsilon [\hbox {--}\upalpha (\hbox {k})+\hbox {G}_{2\upbeta (\mathrm{k})}+\upalpha (\hbox {k})]=:\hbox {A}. \end{aligned}$$

Since A is a group, \(\hbox {A}+\hbox {h}(\hbox {t}_{2}\hbox {--}\hbox {t}_{1})=\hbox {A}\). This yields that \(\hbox {A}+\hbox {h}(\hbox {t}_{2})=\hbox {A}+\hbox {h}(\hbox {t}_{1})\).

Let f be a solution of (1). Then the function \(\upvarphi =\hbox {b}_{2}\hbox {f}\text{ b }_{1}^{-1}\) is a solution of the equation

$$\begin{aligned} \upvarphi (\hbox {C}+\hbox {t})=\upvarphi (\hbox {C})+\hbox {h}(\hbox {t}), \end{aligned}$$
(5)

where \(\upvarphi :\cup _{\mathrm{k}\upepsilon K_{1}} :\hbox {G}_{1}/\hbox {G}_{\mathrm{1k}}\rightarrow \cup _{\mathrm{k}\upepsilon K_{2}} :\hbox {G}_{2}/\hbox {G}_{\mathrm{2k}}\). Indeed, for \(\hbox {C}\upepsilon \cup _{\mathrm{k}\upepsilon K_{1}} :\hbox {G}_{1}/\hbox {G}_{\mathrm{1k}}\) there exists \(\hbox {x}\upepsilon \hbox {S}_{1}\) such that \(\hbox {b}_{1}(\hbox {x})=\hbox {C}\) thus \(\hbox {x}=\text{ b }_{1}^{-1} (\hbox {C})\) and

$$\begin{aligned} \hbox {b}_{2}\text{ fb }_{1}^{-1} (\hbox {C}+\hbox {t})= & {} \hbox {b}_{2}\hbox {fb}_{1}^{-1}(\hbox {b}_{1}(\hbox {x})+\hbox {t})= \hbox {b}_{2}\hbox {f}(\hbox {F}_{1}(\hbox {x,t}))=\hbox {b}_{2}\hbox {F}_{2}(\hbox {f}(\hbox {x}),\hbox {h}(\hbox {t}))\\= & {} \hbox {b}_{2}\text{ b }_{2}^{-1} [\hbox {b}_{2}(\hbox {f}(\hbox {x}))+\hbox {h}(\hbox {t})]=\hbox {b}_{2}\text{ fb }_{1}^{-1} (\hbox {C})+\hbox {h}(\hbox {t}). \end{aligned}$$

Since \(\upvarphi (\hbox {G}_{\mathrm{1k}})\upepsilon \cup _{\mathrm{k}\upepsilon K_{2}} :\hbox {G}_{2}/\hbox {G}_{\mathrm{2k}}\) there exist functions \(\upalpha :\hbox {K}_{1}\rightarrow \hbox {G}_{2}\) and \(\upbeta :\hbox {K}_{1}\rightarrow \hbox {K}_{2}\) such that \(\upvarphi (\hbox {G}_{\mathrm{1k}})=\hbox {G}_{2\upbeta (\mathrm{k})}+\upalpha (\hbox {k})\). We have thus for \(\hbox {t}\upepsilon \hbox {G}_{\mathrm{1k}}\) that \(\upvarphi (\hbox {G}_{\mathrm{1k}}+\hbox {t})=\upvarphi (\hbox {G}_{\mathrm{1k}})=\upvarphi (\hbox {G}_{\mathrm{1k}})+\hbox {h}(\hbox {t})\). This yields that \(\hbox {G}_{ 2\upbeta (\mathrm{k})}+\upalpha (\hbox {k})=\hbox {G}_{2\upbeta (\mathrm{k})}+\upalpha (\hbox {k})+\hbox {h}(\hbox {t})\). From here \(\hbox {h}(\hbox {t})\upepsilon [\hbox {--}\upalpha (\hbox {k})+\hbox {G}_{2\upbeta (\mathrm{k})}+\upalpha (\hbox {k})]\) if \(\hbox {t}\upepsilon \hbox {G}_{\mathrm{1k.}}\). This implies \(\hbox {h}(\hbox {G}_{\mathrm{1k}})\subset [\hbox {--}\upalpha (\hbox {k})+\hbox {G}_{2\upbeta (\mathrm{k})}+\upalpha (\hbox {k})]\). Moreover for \(\hbox {C}=\hbox {G}_{\mathrm{1k}}+\hbox {t}\) we obtain

$$\begin{aligned} \upvarphi (\hbox {C})=\upvarphi (\hbox {G}_{\mathrm{1k}}+\hbox {t})=\upvarphi (\hbox {G}_{\mathrm{1k}})+\hbox {h}(\hbox {t})= \hbox {G}_{2\upbeta (\mathrm{k})}+\upalpha (\hbox {k})+\hbox {h}(\hbox {t}). \end{aligned}$$

Assume now that \(\hbox {f}=\text{ b }_{2}^{-1} \upvarphi \hbox {b}_{1}\) with \(\upvarphi \) as in (4). The function \(\upvarphi \) is a solution of the Eq. (5) since for \(\hbox {C}=\hbox {G}_{\mathrm{1k}}+\hbox {t}_{1}\)

$$\begin{aligned} \upvarphi (\hbox {C}+\hbox {t})= & {} \upvarphi (\hbox {G}_{\mathrm{1k}}+\hbox {t}_{1}+\hbox {t})=\hbox {G}_{2\upbeta (\mathrm{k})}+\upalpha (\hbox {k})+\hbox {h}(\hbox {t}_{1}+\hbox {t})\\ {}= & {} \hbox {G}_{2\upbeta (\mathrm{k})}+\upalpha (\hbox {k})+\hbox {h}(\hbox {t}_{1})+\hbox {h}(\hbox {t}) = \upvarphi (\hbox {G}_{\mathrm{1k}}+\hbox {t}_{1})+\hbox {h}(\hbox {t})=\upvarphi (\hbox {C})+\hbox {h}(\hbox {t}). \end{aligned}$$

From here we have

$$\begin{aligned} \hbox {f}[\hbox {F}_{1}(\hbox {x,t})]= & {} \text{ b }_{2}^{-1} \upvarphi \hbox {b}_{1}[\text{ b }_{1}^{-1} (\hbox {b}_{1}(\hbox {x})+\hbox {t})]= \text{ b }_{2}^{-1} \upvarphi (\hbox {b}_{1}(\hbox {x})+\hbox {t})= \text{ b }_{2}^{-1} [\upvarphi (\hbox {b}_{1}(\hbox {x}))+\hbox {h}(\hbox {t})]\\= & {} \text{ b }_{2}^{-1} [\hbox {b}_{2}\text{ b }_{2}^{-1} \upvarphi (\hbox {b}_{1}(\hbox {x}))+\hbox {h}(\hbox {t})]=\text{ b }_{2}^{-1} [\hbox {b}_{2}(\hbox {f}(\hbox {x}))+\hbox {h}(\hbox {t})]=\hbox {F}_{2}(\hbox {f}(\hbox {x}),\hbox {h}(\hbox {t})). \end{aligned}$$

\(\square \)

Remark

The solution f of (1) is a function from \(\hbox {S}_{1}\) to \(\hbox {S}_{\mathrm{2}}\) but only the stability groups \(\hbox {G}_{\mathrm{ik}}\) and the homomorphism h decide about the existence of this solution.

Examples

1.:

Put

and \(\hbox {h}(\hbox {t})=\hbox {t}\).

We have \(\hbox {G}_{1}=\hbox {G}_{2}=\mathbb {R}\), \(\hbox {S}_{1}=(\hbox {--} \frac{\pi }{2}, \frac{\pi }{2})\), \(\hbox {K}_{1}=\{ 1\}\) , \(\hbox {S}_{{11}}=\hbox {S}_{1}\), \(\hbox {b}_{11}=\hbox {tn}\), \(\hbox {G}_{{11}}=\{ 0\}\), \(\hbox {S}_{2}=\mathbb {R}\), \(\hbox {K}_{2}=\{ 1,2,3\}\), \(\hbox {S}_{{21}}=(0,+\infty )\), \(\hbox {S}_{{22}}=\{ 0\}\), \(\hbox {S}_{{23}}=(\hbox {--}\infty ,0)\), \(\hbox {b}_{{21}}=\hbox {ln}\), \(\hbox {b}_{{22}}=0\), \(\hbox {b}_{{23}}(\hbox {x})=\hbox {ln}(\hbox {-x})\), \(\hbox {G}_{{21}}=\{ 0\}\), \(\hbox {G}_{{22}}=\mathbb {R}\), \(\hbox {G}_{{23}}=\{ 0\}\).

The condition (3) has the form \(\hbox {G}_{11}\subset \hbox {G}_{\mathrm{2\upbeta (1)}}\) and this is true for \(\upbeta (1)=1,2,3\) and for every \(\upalpha (1)=:\hbox {a}\upepsilon \mathbb {R}\).

If \(\upbeta (1)=1\), then \(\upvarphi (\hbox {G}_{11}+\hbox {t})=\upvarphi (\{ 0\} +\hbox {t})=\{ 0\} +\hbox {a}+\hbox {t}\). For \(\hbox {C}(\hbox {t}):=\{ 0\} +\hbox {t}\) we have \(\upvarphi (\hbox {C}(\hbox {t}))= \hbox {C}(\hbox {a}+\hbox {t})\). From here \(\upvarphi (\hbox {b}_{11}(\hbox {x}))=\upvarphi (\hbox {C}(\hbox {tnx}))=\hbox {C}(\hbox {a}+\hbox {tnx})\).This yields that

$$\begin{aligned} \text{ f }\left( {\text{ x }} \right) =\text{ b }_{21}^{-1} (\hbox {C}(\hbox {a}+\hbox {tnx}))=\hbox {exp}(\hbox {a}+\hbox {tnx}). \end{aligned}$$

Analogously if \(\upbeta (1)=2\), then \(\hbox {f}(\hbox {x})=0\) and if \(\upbeta (1)=3\), then \(\hbox {f}(\hbox {x})=\hbox {-exp}(\hbox {a}+\hbox {tnx})\).

From here the functions \(\hbox {f}(\hbox {x})=\upvarepsilon \hbox {exp}(\hbox {a}+\hbox {tnx})\) for \(\hbox {x}\upepsilon (\hbox {--} \frac{\pi }{2}, \frac{\pi }{2})\), \(\hbox {a}\upepsilon \mathbb {R}\), \(\upvarepsilon \upepsilon \{ \hbox {--}1,0,1\}\) are the only solutions of (1) in the case of the above functions \(\hbox {F}_{1}\) and \(\hbox {F}_{2}\).

2.:

The equation

$$\begin{aligned} \hbox {f}[\hbox {F}_{2}(\hbox {x,t})]=\hbox {F}_{1}(\hbox {f}(\hbox {x}),\hbox {h}(\hbox {t})), \end{aligned}$$

where \(\hbox {F}_{1},\hbox {F}_{2},\hbox {h}\) are as in Example 1, does not have a solution. In fact, there does not exist a function \(\upbeta :\hbox {K}_{2}\rightarrow \hbox {K}_{1}\) for which \(\mathbb {R}=\hbox {G}_{22}\subset \hbox {G}_{1\upbeta (\mathrm{k})}=\hbox {G}_{11}=\{ 0\}\).

We prove this fact directly, too. We have \(\hbox {f}[\hbox {F}_{2}(0,\hbox {t})]=\hbox {f}(0)\ne \hbox {F}_{1}(\hbox {f}(0),\hbox {t})\) since \(\hbox {F}_{1}(\hbox {f}(0),\mathbb {R})= (\hbox {--}\frac{\pi }{2}, \frac{\pi }{2})\).

  1. 3.

    Let the function F be of the form

    $$\begin{aligned} \hbox {F}(\hbox {x,t})=\left\{ \begin{array}{ll} \text{ b }_{\mathrm{n}}^{-1} [\hbox {b}_{\mathrm{n}}(\hbox {x})+\hbox {t}] &{} \quad \hbox { for } \hbox {x}\upepsilon \hbox {S}_{\mathrm{n}}, \quad \hbox {t}\upepsilon \hbox {G},\\ \hbox {x} &{}\quad \hbox { for } \hbox {x}\upepsilon \hbox {S}\backslash \cup \hbox {S}_{\mathrm{n}}=:\hbox {N}_{2}, \hbox {t}\upepsilon \hbox {G}, \end{array}\right. \end{aligned}$$
    (6)

where G is an abelian group, \(\hbox {S}_{\mathrm{n}}\) are disjoint subsets of S such that \(\hbox {cardS}_{\mathrm{n}}=\hbox {cardG}\) for n in a set \(\hbox {N}_{1}\) of indices which is disjoint with \(\hbox {N}_{2}\) and \(\hbox {h}_{\mathrm{n}}:\hbox {S}_{\mathrm{n}}\rightarrow \hbox {G}\) are bijections.

Consider the equation

$$\begin{aligned} \hbox {f}[\hbox {F}(\hbox {x,t})]=\hbox {F}(\hbox {f}(\hbox {x}),\hbox {t}). \end{aligned}$$
(7)

Put \(\hbox {N}=\hbox {N}_{1}\cup \hbox {N}_{2}\). The formula

$$\begin{aligned} \hbox {f}(\hbox {x})=\left\{ \begin{array}{ll} \upgamma (\hbox {x}) &{}\quad \hbox { for } \hbox {x}\upepsilon \hbox {N}_{2},\\ \upgamma (\hbox {n}) &{}\quad \hbox { for } \hbox {x}\upepsilon \hbox {S}_{\mathrm{n}}, \upgamma (\hbox {n})\upepsilon \hbox {N}_{2},\\ \text{ b }_{\upgamma \left( \text{ n } \right) }^{-1} [\hbox {b}_{\mathrm{n}}(x)+\updelta (\hbox {n})] &{}\quad \hbox { for } \hbox {x}\upepsilon \hbox {S}_{\mathrm{n}}, \upgamma (\hbox {n})\upepsilon \hbox {N}_{1}, \end{array}\right. \end{aligned}$$
(8)

where the function \(\upgamma :\hbox {N}\rightarrow \hbox {N}\) is such that \(\upgamma (\hbox {N}_{2})\subset \hbox {N}_{2}\) and \(\updelta \) is an arbitrary function from \(\hbox {N}_{1}\) to G, gives all the solutions of (7).

For the proof assume that the function \(\hbox {f}:\hbox {S}\rightarrow \hbox {S}\) is a solution of (7). If \(\hbox {x}\upepsilon \hbox {S}\backslash \cup \hbox {S}_{\mathrm{n}}= \hbox {N}_{2}\), then \(\hbox {f}(\hbox {x})=\hbox {f}[\hbox {F}(\hbox {x,t})]=\hbox {F}(\hbox {f}(\hbox {x}),\hbox {t})\), thus \(\hbox {f}(\hbox {x})\upepsilon \hbox {N}_{2}\) and we put \(\upgamma (\hbox {x})=\hbox {f}(\hbox {x})\).

If \(\hbox {x}\upepsilon \hbox {S}_{\mathrm{n}}\) and \(\hbox {f}(\hbox {x})\upepsilon \hbox {N}_{2}\), then we have \(\hbox {f}[\hbox {F}(\hbox {x,t})\} =\hbox {F}(\hbox {f}(\hbox {x}),\hbox {t})=\hbox {f}(\hbox {x})\). This yields that f is a constant function on \(\hbox {S}_{\mathrm{n}}\) and this constant, denoted \(\upgamma (\hbox {n})\), is in \(\hbox {N}_{2}\). From here \(\hbox {f}(\hbox {x})=\upgamma (\hbox {n})\) for \(\hbox {x}\upepsilon \hbox {S}_{\mathrm{n}}\).

If \(\hbox {x}\upepsilon \hbox {S}_{\mathrm{n}}\) and \(\hbox {f}(\hbox {x})\upepsilon \cup \hbox {I}_{\mathrm{n}}\), then \(\hbox {f}(\hbox {x})\upepsilon \hbox {S}_{\mathrm{m}}\) for some \(\hbox {m}\upepsilon \hbox {N}_{1}\). Since \(\hbox {f}[\hbox {F}(\hbox {x,t})]=\hbox {F}(\hbox {f}(\hbox {x}),\hbox {t})\upepsilon \hbox {S}_{\mathrm{m}}\), thus the values of the function f on \(\hbox {S}_{\mathrm{n}}\) are in \(\hbox {S}_{\mathrm{m}}\). From here m is determined by n, thus m is a function of \(\hbox {n}: \hbox {m}=\upgamma (\hbox {n})\upepsilon \hbox {N}_{1}\). Let \(\hbox {x}_{0}\) be a fixed point of \(\hbox {S}_{\mathrm{n}}\), then \(\hbox {f}(\hbox {x}_{0})\upepsilon \hbox {S}_{{\upgamma (\mathrm{n})}}\). Since \(\hbox {x}\upepsilon \hbox {S}_{\mathrm{n}}\), for \(\uptau =\hbox {b}_{\mathrm{n}}(\hbox {x})\hbox {--b}_{\mathrm{n}}(\hbox {x}_{0})\) we have \(\hbox {F}(\hbox {x}_{0},\uptau )=\text{ b }_{\mathrm{n}}^{-1} (\hbox {b}_{\mathrm{n}}(\hbox {x}_{0})+\uptau )=\hbox {x}\). This implies that

$$\begin{aligned} \hbox {f}(\hbox {x})&=\hbox {f}[\hbox {F}(\hbox {x}_{0},\uptau )]=\hbox {F}(\hbox {f}(\hbox {x}_{0}),\uptau )=\text{ b }_{{\upgamma }\left( {\text{ n }} \right) }^{-1} [\hbox {b}_{{\upgamma (\mathrm{n})}}(\hbox {f}(\hbox {x}_{0}))+ \hbox {b}_{\mathrm{n}}(\hbox {x})\hbox {--b}_{\mathrm{n}}(\hbox {x}_{0})]\\&=\text{ b }_{{\upgamma }\left( {\text{ n }} \right) }^{-1} (\hbox {b}_{\mathrm{n}}(\hbox {x})+\updelta (\hbox {n})), \end{aligned}$$

where \(\updelta (\hbox {n})= \hbox {b}_{{\upgamma (\mathrm{n})}}(\hbox {f}(\hbox {x}_{0}))\hbox {--b}_{\mathrm{n}}(\hbox {x}_{0})\) is a function from \(\hbox {N}_{1}\) to G.

It is easily to verify that a function of the form (8) is the solution of the Eq. (7).

This result is proven in [9] if F: \(\mathbb {R}\times \mathbb {R}\rightarrow \mathbb {R}\) is the continuous solution of the translation equation. Note that the formula (8) gives all the functions f which are commutative with the functions of the family \(\{ \hbox {F}(\mathbf . , \hbox {t})\} _{\mathrm{t}\upepsilon }\hbox {G}\) of functions from S to S.

If a solution \(\hbox {F}:\mathbb {R}\times \mathbb {R}\rightarrow \mathbb {R}\) of the translation equation, such that \(\hbox {F}(\hbox {x},0)=\hbox {x}\) for \(\hbox {x}\upepsilon \mathbb {R}\), is continuous with respect to the second variable for every \(\hbox {x}\upepsilon \mathbb {R}\) and for which at least one of the functions \(\hbox {F}(\mathbf ., \hbox {t}): \mathbb {R}\rightarrow \mathbb {R}\) is continuous, then the function F has the form (6). In this case \(\hbox {S}_{\mathrm{n}}\) are open intervals and \(\hbox {b}_{\mathrm{n}}\) are homeomorphisms and the function F is continuous [10]. This solution F of the translation equation is continuous, too, if F is Carathéodory, i.e., the function \(\hbox {F}(\hbox {x}, \mathbf . ): \mathbb {R}\rightarrow \mathbb {R}\) is measurable for every \(\hbox {x}\upepsilon \mathbb {R}\) and function \(\hbox {F}(\mathbf . ,\hbox {t}):\mathbb {R}\rightarrow \mathbb {R}\) is continuos for every \(\hbox {t}\upepsilon \mathbb {R}\) [2].

Recall that \(\hbox {x}_{0}\) is said to be a fixed point of the function \(\hbox {F}:\hbox {S}\times \hbox {G}\rightarrow \hbox {G}\) if \(\hbox {F}(\hbox {x}_{0},\hbox {t})=\hbox {x}_{0}\) for \(\hbox {t}\upepsilon \hbox {G}\).

Theorem 2

Let \(\hbox {F}:\mathbb {R}\times \mathbb {R}\rightarrow \mathbb {R}\) be a continuous solution of the translation equation such that \(\hbox {F}(\hbox {x},0)=\hbox {x}\) for \(\hbox {x}\upepsilon \mathbb {R}\). Every solution f of (7) is continuous if and only if F does not have any fixed points.

Proof

Assume that f is a solution of (7). If F does not have any fixed points, then the set \(\hbox {N}_{1}\) in the form (8) of F is a singelton \(\hbox {N}_{1}=\{ \hbox {m}\}\) and \(\hbox {S}_{\mathrm{m}}=\mathbb {R}\). From here \(\upgamma (\hbox {m})=\hbox {m}\) and \(\hbox {f}(\hbox {x})=\text{ b }_{\mathrm{m}}^{-1} (\hbox {b}_{\mathrm{m}}(\hbox {x})+\updelta (\hbox {m}))\) for \(\hbox {x}\upepsilon \mathbb {R}\), where \(\hbox {b}_{\mathrm{m}}:\mathbb {R}\rightarrow \mathbb {R}\) is a homeomorphism and \(\updelta (\hbox {m})\upepsilon \mathbb {R}\). The function f is thus continuous.

If a is the only fixed point of F, i.e., \(\hbox {N}_{2}=\{ \hbox {a}\}\) in (6), then \(\hbox {N}_{\mathrm{1}}\) has two elements, which we denote as 1,2, so that \(\hbox {S}_{1}=(\hbox {--}\infty ,\hbox {a})\) and \(\hbox {S}_{2}=(\hbox {a},+\infty )\). If \(\upgamma (1)=2\), \(\upgamma (2)=2\), \(\upgamma (\hbox {a})=\hbox {a}\), \(\updelta :\{ 1,2\} \rightarrow \mathbb {R}\) is an arbitrary function and \(\hbox {b}_{1}:\hbox {S}_{1}\rightarrow \mathbb {R}\) and \(\hbox {b}_{2}:\hbox {S}_{2}\rightarrow \mathbb {R}\) are arbitrary increasing bijections, then the function f defined as in (8) is a solution of (7). For \(\hbox {x}\upepsilon \hbox {S}_{1}\) we obtain \(\hbox {f}(\hbox {x})=\text{ b }_{2}^{-1} (\hbox {b}_{1}(\hbox {x})+\updelta (1))\). We have for \(\hbox {x}\rightarrow \hbox {a}\) that \(\hbox {b}_{1}(\hbox {x})+\updelta (1) \rightarrow +\infty \), thus \(\text{ b }_{2}^{-1} (\hbox {b}_{1}(\hbox {x})+\updelta (1))\rightarrow +\infty \) and from here f is not continuous.

Let a and b be two different fixed point of F. We consider two cases.

  1. a/

    Every point of the interval (a,b) is a fixed point of F.

  2. b/

    The opposite case to a/.

In case a/ let the function \(\upgamma \) in (8) be such that \(\upgamma (\hbox {a})=\hbox {b}\) and \(\upgamma (\hbox {x})=\hbox {x}\) for \(\hbox {x}\upepsilon (\hbox {a,b})\). From here we have for the function f defined as in (8) that

$$\begin{aligned} \hbox {lim}_{\mathrm{x}\rightarrow \mathrm{a}+} \hbox {f}(\hbox {x})=\hbox {a}\ne \hbox {b}=\upgamma (\hbox {a})=\hbox {f}(\hbox {a}), \end{aligned}$$

thus f is discontinuous.

In case b/ there exists at least one n\(\upepsilon \hbox {N}_{1}\) in the form (6) of the function F such that \(\hbox {S}_{\mathrm{n}}\subset (\hbox {a,b})\). Let \(\hbox {c}=\hbox {infS}_{\mathrm{n}}\). Then \(\hbox {c}\upepsilon \hbox {N}_{2}\). Let \(\upgamma \) in (8) be such that \(\upgamma (\hbox {c})=\hbox {b}\), \(\upgamma (\hbox {n})=\hbox {n}\) and let \(\updelta (\hbox {n})=0\) in (8). From here \(\hbox {f}(\hbox {x})=\hbox {x}\) for \(\hbox {x}\upepsilon \hbox {S}_{\mathrm{n}}\). This yields that

$$\begin{aligned} \hbox {lim}_{\mathrm{x}\rightarrow \mathrm{c}+}\hbox {f}(\hbox {x})=\hbox {c}\ne \hbox {b}=\upgamma (\hbox {c})=\hbox {f}(\hbox {c}), \end{aligned}$$

thus f is discontinuous. \(\square \)

If in Eq. (7) we take the function \(\hbox {F}_{1}\) of Example 1 as the function F, then the solution f has the form \(\hbox {f}(\hbox {x})=\hbox {tn}^{-1}(\hbox {tnx}+\updelta )\) for \(\updelta \upepsilon \mathbb {R}\). If in this equation we have \(\hbox {F}_{2}\), then

$$\begin{aligned} \hbox {f}(\hbox {x})=\left\{ \begin{array}{ll} 0 &{}\quad \hbox { for } \hbox {x}=0,\\ 0 &{}\quad \hbox { for } \hbox {x}\upepsilon \hbox {S}_{\mathrm{n}}, \upgamma (\hbox {n})=0,\\ \text{ b }_{\upgamma \left( \mathrm{n} \right) }^{-1} (\hbox {b}_{\mathrm{n}}(\hbox {x})+\updelta (\hbox {n})) &{}\quad \hbox { for } \hbox {x}\upepsilon \hbox {S}_{\mathrm{n}}, \upgamma (\hbox {n})\ne 0, \end{array}\right. \end{aligned}$$

where \(\hbox {S}_{1}=(0,+\infty )\), \(\hbox {S}_{2}=(\hbox {--}\infty ,0)\), \(\upgamma :\{ 0,1,2\} \rightarrow \{ 0,1,2\}\), \(\upgamma (0)=0\), \(\updelta :\{ 1,2\} \rightarrow \mathbb {R}\), \(\hbox {b}_{1}(\hbox {x})=\hbox {lnx}\), \(\hbox {b}_{2}(\hbox {x})=\hbox {ln}(\hbox {-x})\).

4.:

The constant function \(\hbox {f}(\hbox {x})=\hbox {c}\) for \(\hbox {x}\upepsilon \hbox {S}_{1}\) is a solution of (1) if and only if \(\hbox {F}_{2}(\hbox {c,h}(\hbox {t}))=\hbox {c}\) for \(\hbox {t}\upepsilon \hbox {G}_{1}\). We verify condition (3) directly in this case. If \(\hbox {f}(\hbox {x})=\hbox {c}\upepsilon \hbox {S}_{2}\) is a solution of (1), then there exists a \(\hbox {l}\upepsilon \hbox {K}_{2}\) such that \(\hbox {c}\upepsilon \hbox {S}_{\mathrm{2l}}\). From here \(\hbox {F}_{2}(\hbox {c,s})=\text{ b }_{21}^{-1} [\hbox {b}_{\mathrm{2l}}(\hbox {c})+\hbox {s}]\) thus \(\hbox {c}= \hbox {F}_{2}(\hbox {c,h}(\hbox {t}))=\text{ b }_{21}^{-1} [\hbox {b}_{\mathrm{2l}}(\hbox {c})+\hbox {h}(\hbox {t})]\) for \(\hbox {t}\upepsilon \hbox {G}_{1}\). There exists \(\hbox {s}_{0}\upepsilon \hbox {G}_{2}\) for which \(\hbox {b}_{\mathrm{2l}}(\hbox {c})=\hbox {G}_{\mathrm{2l}}+\hbox {s}_{0}\). This yields that \(\hbox {G}_{\mathrm{2l}}+\hbox {s}_{0}=\hbox {b}_{\mathrm{2l}}(\hbox {c})=\hbox {G}_{\mathrm{2l}}+\hbox {s}_{0}+\hbox {h}(\hbox {t})\). From here \(-\hbox {s}_{0}+ \hbox {G}_{\mathrm{2l}}+\hbox {s}_{0}=(\hbox {--s}+\hbox {G}_{\mathrm{2l}}+\hbox {s}_{0})+\hbox {h}(\hbox {t})\). Since \(-\hbox {s}_{0}+ \hbox {G}_{\mathrm{2l}}+\hbox {s}_{0}\) is a group, \(\hbox {h}(\hbox {G}_{1})\subset [-\hbox {s}_{0}+ \hbox {G}_{\mathrm{2l}}+\hbox {s}_{0}]\). We have \(\hbox {h}(\hbox {G}_{\mathrm{1k}})\subset \hbox {h}(\hbox {G}_{1})\) for \(\hbox {k}\upepsilon \hbox {K}_{1}\), thus the condition (3) is satisfied with \(\upbeta (\hbox {k})=\hbox {s}_{0}\) for \(\hbox {k}\upepsilon \hbox {K}_{1}\).

5.:

Consider the equation

$$\begin{aligned} \hbox {f}(\hbox {g}(\hbox {x}))=\hbox {g}(\hbox {f}(\hbox {x})), \end{aligned}$$
(9)

where \(\hbox {g}:\hbox {S}\rightarrow \hbox {S}\) is a given idempotent function and \(\hbox {f}:\hbox {S}\rightarrow \hbox {S}\) is the unknown function. This is an equation of the form (1) for \(\hbox {F}_{1}(\hbox {x,t})=\hbox {F}_{2}(\hbox {x,t})=\hbox {g}(\hbox {x})\).

If g is an injective function on the set \(\hbox {S}\backslash \hbox {g}(\hbox {S})\), then every function f of of the form

$$\begin{aligned} \hbox {f}(\hbox {x})=\left\{ \begin{array}{ll} \hbox {f}_{1}(\hbox {x}) &{}\quad \hbox { for } \hbox {x}\upepsilon \hbox {g}(\hbox {S}),\\ \text{ g }_{1}^{-1} [\hbox {f}_{1}(\hbox {g}(\hbox {x})]&{}\quad \hbox { for } \hbox {x}\upepsilon \hbox {S}\backslash \hbox {g}(\hbox {S}), \end{array}\right. \end{aligned}$$
(10)

where \(\hbox {f}_{1}\) is an arbitrary function from g(S) to g(S) and \(\hbox {g}_{1}=\hbox {g}_{\vert \mathrm{S}\backslash \mathrm{g}(\mathrm{S})}\), is a solution of (9).

Indeed, if \(\hbox {x}\upepsilon \hbox {g}(\hbox {S})\), then there exists \(\hbox {y}\upepsilon \hbox {S}\) such that \(\hbox {x}=\hbox {g}(\hbox {y})\). From here \(\hbox {f}(\hbox {g}(\hbox {x}))=\hbox {f}[\hbox {g}(\hbox {g}(\hbox {y}))]= \hbox {f}(\hbox {g}(\hbox {y}))= \hbox {f}(\hbox {x})=\hbox {f}_{1}(\hbox {x})=\hbox {g}(\hbox {f}_{1}(\hbox {x}))=\hbox {g}(\hbox {f}(\hbox {x}))\) since g is the identity on g(S) as the idempotent. If \(\hbox {x}\upepsilon \hbox {S}\backslash \hbox {g}(\hbox {S})\), then \(\hbox {g}(\hbox {f}(\hbox {x}))=\hbox {f}_{1}(\hbox {g}(\hbox {x}))=\hbox {f}(\hbox {g}(\hbox {x}))\) since \(\hbox {g}(\hbox {x})\upepsilon \hbox {g}(\hbox {S})\).

If \(\hbox {S}=\hbox {g}(\hbox {S})\), i.e., if \(\hbox {g}(\hbox {x})=\hbox {x}\) for \(\hbox {x}\upepsilon \hbox {S}\), then every function \(\hbox {f}:\hbox {S}\rightarrow \hbox {S}\) is a solution of (9).

If \(\hbox {S}\ne \hbox {g}(\hbox {S})\), then a solution f of (9) is of the form (10) if and only if \(\hbox {f}(\hbox {S}\backslash \hbox {g}(\hbox {S}))\subset \hbox {S}\backslash \hbox {g}(\hbox {S})\). In fact, if f is a solution of (9) and \(\hbox {f}(\hbox {S}\backslash \hbox {g}(\hbox {S}))\subset \hbox {S}\backslash \hbox {g}(\hbox {S})\), then

  1. a/

    for \(\hbox {x}\upepsilon \hbox {g}(\hbox {S})\) we have \(\hbox {f}(\hbox {x})=\hbox {f}(\hbox {g}(\hbox {x}))=\hbox {g}(\hbox {f}(\hbox {x}))\upepsilon \hbox {g}(\hbox {S})\), thus \(\hbox {f}_{1}=\hbox {f}_{\vert \mathrm{g(S)}}\) is a function from g(S) to g(S) and \(\hbox {f}=\hbox {f}_{1}\) on g(S),

  2. b/

    for \(\hbox {x}\upepsilon \hbox {S}\backslash \hbox {g}(\hbox {S})\) we have \(\hbox {f}(\hbox {x})\upepsilon \hbox {S}\backslash \hbox {g}(\hbox {S})\) and \(\hbox {f}(\hbox {x})=\text{ g }_{1}^{-1} [\hbox {f}_{1}(\hbox {g}(\hbox {x})]\) since

    $$\begin{aligned} \hbox {g}_{1}(\hbox {f}(\hbox {x}))=\hbox {g}(\hbox {f}(\hbox {x}))= \hbox {f}(\hbox {g}(\hbox {x}))=\hbox {f}_{1}(\hbox {g}(\hbox {x})). \end{aligned}$$

    If f is of the form (10), then for \(\hbox {x}\upepsilon \hbox {S}\backslash \hbox {g}(\hbox {S})\) we obtain \(\hbox {f}(\hbox {x})=\text{ g }_{1}^{-1} [\hbox {f}_{1}(\hbox {g}(\hbox {x})]\upepsilon \hbox {S}\backslash \hbox {g}(\hbox {S})\).

Note in the end that if \(\hbox {S}\ne \hbox {g}(\hbox {S})\), then the function \(\hbox {f}(\hbox {x})=\hbox {c}\upepsilon \hbox {g}(\hbox {S})\) for \(\hbox {x}\upepsilon \hbox {S}\) is a solution of (9) and f is not of the form (10) by the above.

6.:

Let G be the groupoid of \(\hbox {n}\times \hbox {n-matrices}\) with the usual multiplication. We give all the solutions of Eq. (7) in which \(\hbox {F}(\hbox {x,t})=\hbox {xt}:\mathbb {R}^{\mathrm{n}}\times \hbox {G}\rightarrow \mathbb {R}^{\mathrm{n}}\) (the transformation law of the vector). Equation (7) is in this case of the form \(\hbox {f}(\hbox {xt})=\hbox {f}(\hbox {x})\hbox {t}\). Assume that a function \(\hbox {f}:\mathbb {R}^{\mathrm{n}}\rightarrow \mathbb {R}^{\mathrm{n}}\) is a solution of this equation. Put in this equation \(\hbox {x}=(1,0,\ldots ,0)\) and \(t= \vert \vert \hbox {t}_{\mathrm{ik}}\vert \vert _{\mathrm{i,k}=1,\ldots ,\mathrm{n}}\), where \(\hbox {t}_{\mathrm{1k}}=\hbox {x}_{\mathrm{k}}\) for \(\hbox {k}=1,\ \ldots ,\hbox {n}\) and the other \(\hbox {t}_{\mathrm{ik}}\) are arbitrary in \(\mathbb {R}\), we have \(\hbox {f}(\hbox {x}_{1},\ \ldots ,\hbox {x}_{\mathrm{n}})= (\hbox {y}_{1},\ \ldots ,\hbox {y}_{\mathrm{n}})\hbox {t}\), where \(\hbox {y}:= (\hbox {y}_{1},\ \ldots ,\hbox {y}_{\mathrm{n}})= \hbox {f}(1,0,\ \ldots ,0)\). Assume that there exists \(\hbox {m}\ne 1\) for which \(\hbox {y}_{\mathrm{m}}\ne 0\). Let \(\hbox {a}_{1}=\vert \vert \hbox {a}_{\mathrm{ik}}\vert \vert _{\mathrm{i,k}=1,\ldots ,\mathrm{n}}\), where \(\hbox {a}_{\mathrm{1k}}=\hbox {x}_{\mathrm{k}}\) for \(\hbox {k}=1,\ \ldots ,\hbox {n}\), \(\hbox {a}_{\mathrm{i1}}=0\) for \(\hbox {i}\ne 1\) and the other \(\hbox {a}_{\mathrm{ik}}\) are arbitrary in \(\mathbb {R}\). Let \(\hbox {a}_{2}=\vert \vert \hbox {b}_{\mathrm{ik}}\vert \vert _{\mathrm{i,k}=1,\ldots ,\mathrm{n}}\), where \(\hbox {b}_{\mathrm{1k}}=\hbox {x}_{\mathrm{k}}\) for \(\hbox {k}=1,\ \ldots ,\hbox {n}\), \(\hbox {b}_{\mathrm{m1}}=1\), \(\hbox {b}_{\mathrm{i1}}=0\) for \(\hbox {i}\ne 1,\hbox {m}\) and the other \(\hbox {b}_{\mathrm{ik}}\) are arbitrary in \(\mathbb {R}\). Puting \(\hbox {t}=\hbox {a}_{\mathrm{l}}\) in our equation we have \(\hbox {f}(\hbox {x}_{1},\ \ldots ,\hbox {x}_{\mathrm{n}})=\hbox {ya}_{\mathrm{l}}\). From here \(\hbox {ya}_{1}=\hbox {ya}_{2}\) and in particular

$$\begin{aligned} \hbox {y}_{1}\hbox {x}_{1}&=\hbox {y}_{1}\hbox {a}_{11}+\hbox {y}_{2}\hbox {a}_{\mathrm{21}}+\ \cdots +\hbox {y}_{\mathrm{n}}\hbox {a}_{\mathrm{n1}}=\hbox {y}_{1}\hbox {b}_{11}+\ \cdots +\hbox {y}_{\mathrm{m}}\hbox {b}_{\mathrm{m1}}+\ \cdots \\&+\hbox {y}_{\mathrm{n}}\hbox {b}_{\mathrm{n1}}= \hbox {y}_{1}\hbox {x}_{1}+\hbox {y}_{\mathrm{m}}, \end{aligned}$$

thus \(\hbox {y}_{\mathrm{m}}=0\). We have a contradiction thus \(\hbox {y}_{\mathrm{i}}=0\) for \(\hbox {i}=2,\ \ldots ,\hbox {n}\). This yields, by the equation, that \(\hbox {f}(\hbox {x}_{1},\ \ldots ,\hbox {x}_{\mathrm{n}})=\hbox {y}_{1}(\hbox {x}_{1},\ \ldots ,\hbox {y}_{\mathrm{n}})\). These functions are evidently solutions of our equation.

We have the same result if G is the group of nonsingular \(\hbox {n}\times \hbox {n-matrices}\). We prove this for \(\hbox {n}=2\). If we put in the above

  1. i/

    \(\hbox {a}_{1}=\left\| {\begin{array}{cc} {x_{1} } &{}\quad {x_{2} } \\ 0 &{}\quad 1 \\ \end{array}}\right\| \) and \(\hbox {a}_{2}=\left\| {\begin{array}{cc} {x_{1} } &{}\quad {x_{2} } \\ 1 &{}\quad {x_{2} x_{1}^{-1} +1} \\ \end{array}}\right\| \) for \(\hbox {x}_{1}\ne 0\) and

  2. ii/

    \(\hbox {a}_{1} = \left\| {\begin{array}{cc} {x_{1} } &{}\quad {x_{2} } \\ 1 &{}\quad 0 \\ \end{array}}\right\| \) and \(\hbox {a}_{2}=\left\| {\begin{array}{cc} {x_{1} } &{}\quad {x_{2} } \\ {x_{1} x_{2}^{-1} +1} &{}\quad 1 \\ \end{array}}\right\| \) for \(\hbox {x}_{2}\ne 0\),

then we obtain as above \(\hbox {y}_{2}=0\). Thus by the equation for t nonsingular (e,g., for \(\hbox {t}= \left\| {\begin{array}{cc} {x_{1} } &{}\quad {x_{2} } \\ {-x_{2} } &{}\quad {x_{1} } \\ \end{array} }\right\| )\) we have \(\hbox {f}(\hbox {x}_{1},\hbox {x}_{2})=\hbox {y}_{1}(\hbox {x}_{1},\hbox {x}_{2})\) for \(x_{1}^{2} +x_{2}^{2} \ne 0\).

For \((\hbox {x}_{1},\hbox {x}_{2})=(0,0)\) put in our equation \(\hbox {t}=\left\| {\begin{array}{cc} 1 &{}\quad 1 \\ 1 &{}\quad 0 \\ \end{array}}\right| \) and \(\hbox {f}((0,0))=(\upalpha , \upbeta )\). Then we have \((\upbeta , \upalpha \hbox {--}\upbeta )= (0,0)\), thus \(\upalpha =\upbeta =0\) and from here \(\hbox {f}((0,0))=(0,0)=\hbox {y}_{1}(0,0)\), too.

It is possible to obtain this result also by the method as in Theorem 1 [9]. The above result means in the theory of geometric objects that the multiplication of a vector by a scalar is the only geometric concomitant of the vector.

3 Unknown function \(\hbox {F}_{2}\)

We only need to define the function \(\hbox {F}_{2}\) on \(\hbox {S}_{2}\times \hbox {h}(\hbox {G}_{1})\) due to the form of the Eq. (1)

Theorem 3

  1. 1/

    Equation (1) has a solution for \(\hbox {F}_{2}:\hbox {S}_{2}\times \hbox {h}(\hbox {G}_{1})\rightarrow \hbox {S}_{2}\) if and only if

    $$\begin{aligned} \hbox {f}(\hbox {x})=\hbox {f}(\hbox {y}) \,and\, \hbox {h}(\hbox {t})=\hbox {h}(\hbox {s}) \Rightarrow \hbox {f }[\hbox {F}_{1}(\hbox {x,t})]=\hbox {f }[\hbox {F}_{1}(\hbox {y,s})]\,for\, \hbox {x,y}\upepsilon \hbox {S}_{1}, \hbox {t,s}\upepsilon \hbox {G}_{1}.\quad \end{aligned}$$
    (11)
  2. 2/

    Let functions \(\hbox {f},\hbox {h},\hbox {F}_{1}\) satisfy (11). Then a function of the form

    $$\begin{aligned} \hbox {F}_{2}(\hbox {u,v})=\left\{ \begin{array}{ll} \hbox {f }[\hbox {F}_{1}(\hbox {x,t})] &{} \,for\, \hbox {u}=\hbox {f}(\hbox {x}), \hbox {v}=\hbox {h}(\hbox {t})\\ \hbox {H}(\hbox {u,v}) &{}\, for\, \hbox {u}\upepsilon \hbox {S}_{2}\backslash \hbox {f}(\hbox {S}_{1}),\hbox {v}\upepsilon \hbox {h}(\hbox {G}_{1}), \end{array}\right. \end{aligned}$$
    (12)

where \(\hbox {H}(\hbox {u,v}):(\hbox {S}_{2}\backslash \hbox {f}(\hbox {S}_{1}))\times \hbox {G}_{1}\rightarrow \hbox {S}_{2}\backslash \hbox {f}(\hbox {S}_{1})\) is an arbitrary solution of the translation equation, is a solutions of (1).

Proof

The proof of the “only if” part is evident.

The function \(\hbox {F}_{2}\) defined by (12) is well-defined due to (11) and it is a solution of (1). Moreover, for \(\hbox {u}=\hbox {f}(\hbox {x})\), \(\hbox {v}=\hbox {h}(\hbox {t})\), \(\hbox {w}=\hbox {h}(\hbox {s})\), we have

$$\begin{aligned} \hbox {F}_{2}(\hbox {F}_{2}(\hbox {u,v}),\hbox {w})= & {} \hbox {F}_{2}[\hbox {F}_{2}(\hbox {f}(\hbox {x}),\hbox {h}(\hbox {t})),\hbox {h}(\hbox {s})]= \hbox {F}_{2}[\hbox {f}(\hbox {F}_{1}(\hbox {x,t})),\hbox {h}(\hbox {s})]\\= & {} \hbox {f}[\hbox {F}_{1}(\hbox {F}_{1}(\hbox {x,t}),\hbox {s})]=\hbox {f}[\hbox {F}_{1}(\hbox {x,t}+\hbox {s})]= \hbox {F}_{2}(\hbox {u,v}+\hbox {w}). \end{aligned}$$

\(\square \)

Example

7.:

The condition (11) is satisfied for \(\hbox {h}(\hbox {t})=\hbox {t}\) and by every \(\hbox {f}(\hbox {x})=\upvarepsilon \hbox {exp}(\hbox {a}+\hbox {tnx})\) (\(\upvarepsilon =\hbox {--}1,0,1)\) in the equation in Example 1

  1. a/

    since the function h and the functions f for \(\upvarepsilon \ne 0\) are injective and for \(\hbox {f}=0\) (\(\upvarepsilon =0\)) the condition (11) is evident or

  2. b/

    since there exist function \(\hbox {f},\hbox {h},\hbox {F}_{1},\hbox {F}_{2}\) which satisfy equation (7).

If we want to have \(\hbox {F}_{2}\) defined on \(\hbox {S}_{2}\times \hbox {G}_{2}\), then we must extend the solution \(\hbox {F}_{2}\) of the translation equation on \(\hbox {S}_{2}\times \hbox {h}(\hbox {G}_{1})\) to the solution of the translation equation on \(\hbox {S}_{2}\times \hbox {G}_{2}\). This extension is not always possible (see Example 8 below). For the condition when this extension is possible see [6] and [8].

Examples

8.:

Let \(\hbox {S}_{1}=\hbox {S}_{2}=\mathbb {Z}\), \(\hbox {G}_{1}=\hbox {G}_{2}=\mathbb {Z}\) (the additive group of integers), \(\hbox {f}(\hbox {x})=\hbox {x}, \hbox {h}(\hbox {t})=2\hbox {t}\), \(\hbox {F}_{1}(\hbox {x,t})=\hbox {x}+\hbox {t}\). These functions evidently satisfy (11). Assume that there exists a solution \(\hbox {F}_{2}:\mathbb {Z}\times \mathbb {Z}\rightarrow \mathbb {Z}\) of the translation equation such that \(\hbox {F}_{2}(\hbox {x,u})=\hbox {F}(\hbox {x,t})\) for \(\hbox {u}=2\hbox {t}\), i.e., such that \(\hbox {F}_{2}(\hbox {x},2\hbox {t})= \hbox {F}_{1}(\hbox {x,t})= \hbox {x}+\hbox {t}\) for \((\hbox {x,t})\upepsilon \mathbb {Z}\times \mathbb {Z}\). From here we have for \(\hbox {x}\upepsilon \mathbb {Z}\)

$$\begin{aligned} \mathbb {Z} =\hbox {F}_{1}(\hbox {x},\mathbb {Z})=\hbox {F}_{2}(\hbox {x},2\mathbb {Z})\subset \hbox {F}_{2}(\hbox {x},\mathbb {Z})\subset \mathbb {Z}. \end{aligned}$$

Thus \(\hbox {F}_{2}(\hbox {x},\mathbb {Z})=\mathbb {Z}\). Since \(\hbox {F}_{2}\) is the solution of the translation equation and \(\hbox {F}_{2}(\hbox {x},0)=\hbox {x}\) for \(\hbox {x}\upepsilon \mathbb {Z}\), \(\hbox {F}_{2}(\hbox {x,t})=\text{ b }_{1}^{-1} (\hbox {b}_{1}(\hbox {x})+\hbox {t})\), where \(\hbox {b}_{1}\) is a bijection from \(\mathbb {Z}\) to \(\mathbb {Z}/\mathbb {Z}^{*}\) for a subgroup \(\mathbb {Z}^{*}\) of \(\mathbb {Z}\) [7]. We have \(\hbox {b}_{1}(0)=\mathbb {Z}^{*}+\hbox {a}\) for some \(\hbox {a}\upepsilon \mathbb {Z}\). We obtain for \(\hbox {b}(\hbox {x}):=\hbox {b}_{1}(\hbox {x})\hbox {--a}\) that

$$\begin{aligned} \hbox {F}_{2}(\hbox {x,t})=\text{ b }_{1}^{-1} (\hbox {b}_{1}(\hbox {x})+\hbox {t})= \hbox {b}^{-1}(\hbox {b}(\hbox {x})+\hbox {t}) \hbox { and } \hbox {b}(0)=\mathbb {Z}^{*}. \end{aligned}$$

This yields that \(\hbox {b}^{-1}(\hbox {b}(\hbox {x})+2)=\hbox {F}_{2}(\hbox {x},2)=\hbox {F}_{1}(\hbox {x},1)=\hbox {x}+1\). From here \(\hbox {b}(\hbox {x})+2=\hbox {b}(\hbox {x}+1)\), thus \(\hbox {b}(1)=\hbox {b}(0)+\mathbb {Z}^{*}\). This implies that \(\hbox {b}(\hbox {x})=\mathbb {Z}^{*}+2\hbox {x}\) for \(\hbox {x}\upepsilon \mathbb {Z}\). Let \(\hbox {c}\ge 0\) be the generator of \(\mathbb {Z}^{*}\), i.e., \(\mathbb {Z}^{*}=\{ \hbox {nc:n}\upepsilon \mathbb {Z}\}\).

  1. i/

    If \(\hbox {c}=0\), i.e., \(\mathbb {Z}^{*}=\{0\}\) , then \(\hbox {b}(\hbox {x})=\{0\} +2\hbox {x}\). From here b is not a function onto \(\mathbb {Z}/\mathbb {Z}^{*}\).

  2. ii/

    If \(\hbox {c}> 0\), then \(\hbox {b}(\hbox {c})=\mathbb {Z}^{*}+2\hbox {c}=\mathbb {Z}^{*}=\mathbb {Z}^{*}+4\hbox {c}=\hbox {b}(2\hbox {c})\). Thus the function b is not injective.

9.:

Let \(\hbox {S}_{1}=\hbox {S}_{2}=\hbox {G}_{1}=\hbox {G}_{2}=\hbox {G}\) be a semigrup and \(\hbox {f}(\hbox {x})=\hbox {x}\) for \(\hbox {x}\upepsilon \hbox {G}\). Let \(\hbox {h:G}\rightarrow \hbox {G}\) be a homomorphism such that \(\hbox {h}(\hbox {G})\ne \hbox {G}\) and \(\hbox {F}_{1}(\hbox {x,t})=\hbox {x}+\hbox {h}(\hbox {t})\) for \(\hbox {x,t}\upepsilon \hbox {G}\). The function \(\hbox {F}_{1}\) is the solution of the translation equation and \(\hbox {F}_{1}\) satifies (11). The function \(\hbox {F}_{2}\), definied on \(\hbox {G}\times \hbox {h}(\hbox {G})\) as in (12) (with \(\hbox {f}(\hbox {x})=\hbox {x})\), is of the form \(\hbox {F}_{2}(\hbox {x,h}(\hbox {t}))=\hbox {F}_{1}(\hbox {x,t})= \hbox {x}+\hbox {h}(\hbox {t})\). Thus the function \(\hbox {x}+\hbox {t}\) is an extention of \(\hbox {F}_{2}\) on the set \(\hbox {G}\times \hbox {G}\).

Remarks

It is possible that the functions of the form (12) are not all the solutions of Eq. (1). E.g., if \(\hbox {S}_{1}=\hbox {S}_{2}=\mathbb {R}\), \(\hbox {G}_{1}=\hbox {G}_{2}=\mathbb {R}\) with the usual addition, \(\hbox {h}(\hbox {t})=\hbox {t}\), \(\hbox {f}(\hbox {x})=\hbox {expx}\), \(\hbox {F}_{1}(\hbox {x,t})=\hbox {x}\), \(\hbox {F}_{2}(\hbox {u,v})=\hbox {u}\) for \(\hbox {u}> 0,\hbox {v}\upepsilon \mathbb {R}\) and \(\hbox {F}_{2}(\hbox {u,v})=1\) for \(\hbox {u}\le 0,\hbox {v}\upepsilon \mathbb {R}\), then the solution of the translation equation \(\hbox {F}_{2}\) is the solution of (1), too. This function \(\hbox {F}_{2}\) is not of the form (12) since \(0\upepsilon \hbox {S}_{2}\backslash \hbox {f}(\hbox {S}_{1})=(\hbox {--}\infty , 0]\) and \(\hbox {F}_{2}(0,\hbox {v})=1\notin \hbox {S}_{2}\backslash \hbox {f}(\hbox {S}_{1})\).

If \(\hbox {f}(\hbox {S}_{1})=\hbox {S}_{2}\), then \(\hbox {F}_{2}\) must be of the form \(\hbox {F}_{2}(\hbox {u,v})=\hbox {f}[\hbox {F}_{1}(\hbox {x,t})]\) for \(\hbox {u}=\hbox {f}(\hbox {x})\), \(\hbox {v}=\hbox {h}(\hbox {t})\), thus Eq. (1) has only one solution. In this case if there exists \(\hbox {t}_{0}\) such that \(\hbox {F}_{1}(\hbox {x},\hbox {t}_{0})=\hbox {x}\) for \(\hbox {x}\upepsilon \hbox {S}_{1}\), then \(\hbox {F}_{2}(\hbox {u,h}(\hbox {t}_{0}))=\hbox {f}(\hbox {x})=\hbox {u}\) for \(\hbox {u}\upepsilon \hbox {S}_{2}\). From here if \(\hbox {F}_{1}\) is the transformation law for a geometric object, then \(\hbox {F}_{2}\) is the same.

If \(\hbox {S}_{1}=\hbox {S}_{2}\), then for the function

$$\begin{aligned} \hbox {F}_{2}(\hbox {u,v})=\left\{ \begin{array}{ll} \hbox {f}[\hbox {F}_{1}(\hbox {x,t})] &{}\quad \hbox { for } \hbox {u}=\hbox {f}(\hbox {x}), \hbox {v}=\hbox {h}(\hbox {t}),\\ \hbox {u} &{}\quad \hbox { for } \hbox {u}\upepsilon \hbox {S}_{2}\backslash \hbox {f}(\hbox {S}_{1}), \hbox {v}\upepsilon \hbox {G}_{2} \end{array}\right. \end{aligned}$$

we have the same situation as above.

The condition (11) and the equation

$$\begin{aligned} \hbox {f}[\hbox {F}_{1}(\hbox {x,t})]=\hbox {F}_{1}(\hbox {f}(\hbox {x}),\hbox {h}(\hbox {t})) \end{aligned}$$

are not equivalent. A solution of this equation is a solution of (11) but not vice versa. E.g., every constant function f is a solution of (11) and \(\hbox {f}(\hbox {x})=\hbox {c}\) is a solution of the above equation if and only if \(\hbox {F}_{1}(\hbox {c,h}(\hbox {t}))=\hbox {c}\) for \(\hbox {t}\upepsilon \hbox {G}\).

4 Unknown function \(\hbox {F}_{1}\)

If the function f is injective, then the function \(\hbox {F}_{1}(\hbox {x,t})= \hbox {f}^{-1}[\hbox {F}_{2}(\hbox {f}(\hbox {x}),\hbox {h}(\hbox {t}))]\) is the only solution of (1).

There exists solutions of (1) for a non-injective function f.

Examples

10.:

If \(\hbox {f}(\hbox {x})=\hbox {c}\), \(\hbox {F}_{2}\) is a solution of the translation equation such that c is a fixed point of \(\hbox {F}_{2}\) (\(\hbox {F}_{2}(\hbox {c,v})= \hbox {c}\) for \(\hbox {v}\upepsilon \hbox {G}_{2})\) and h is an arbitrary homomorphism, then every function \(\hbox {F}_{1}:\hbox {S}_{1}\times \hbox {G}_{1}\rightarrow \hbox {S}_{1}\) is a solution of (1).

A function \(\hbox {F}_{1}:\hbox {S}_{1}\times \hbox {G}_{1}\rightarrow \hbox {S}_{1}\) is the solution of (1) only if

\(\hbox {f}(\hbox {x})=\hbox {f}(\hbox {y}) \Rightarrow \hbox {f}(\hbox {F}_{1}(\hbox {x,t}))=\hbox {f}(\hbox {F}_{1}(\hbox {y,t}))\) for \(\hbox {x,y}\upepsilon \hbox {S}_{1}\), \(\hbox {t}\upepsilon \hbox {G}_{1}\).

Note that the solution \(\hbox {F}_{1}(\hbox {x,t})=\hbox {c}\) for \((\hbox {x,t})\upepsilon \hbox {S}_{1}\times \hbox {G}_{1}\) of the above condition is a solution of (1) only if \(\hbox {F}_{2}(\hbox {f}(\hbox {x}),\hbox {h}(\hbox {t}))=\hbox {f}(\hbox {c})\) for \((\hbox {x,t})\upepsilon \hbox {S}_{1}\times \hbox {G}_{1}\).

11.:

Let \(\hbox {F}_{\mathrm{i}}:\hbox {S}_{\mathrm{i}}\times \hbox {G}_{\mathrm{i}}\rightarrow \hbox {S}_{\mathrm{i}}\) for \(\hbox {i}=1,2\) be arbitrary functions not necessarily a solutions of the translation equation. Consider a special case of equation (11) namely if \(\hbox {F}_{2}\) is such that \(\hbox {F}_{2}(\hbox {u,v})=\hbox {u}\) on \(\hbox {f}(\hbox {S}_{1})\times \hbox {h}(\hbox {G}_{1})\). Then Eq. (11) has the form

$$\begin{aligned} \hbox {f}(\hbox {F}_{1}(\hbox {x,t}))=\hbox {f}(\hbox {x}). \end{aligned}$$
(13)

In this case the function \(\hbox {F}_{1}\), such that \(\hbox {x}\upepsilon \hbox {F}_{1}(\hbox {x},\hbox {G}_{1})\) for \(\hbox {x}\upepsilon \hbox {S}_{1}\), is a solution of (11) if and only if the set \(\hbox {F}_{1}(\hbox {x},\hbox {G}_{1})\) is included in some level of the function f for every \(\hbox {x}\upepsilon \hbox {S}_{1}\).

From here the function \(\hbox {F}_{1}\) of the form as in (2) satisfisies Eq. (13) if and only if for every \(\hbox {k}\upepsilon \hbox {K}_{1}\) the set \(\hbox {S}_{\mathrm{1k}}\) is included in some level of f.

E.g., let \(\hbox {S}_{1}=\mathbb {R}\) and \(\hbox {f}(\hbox {x})=\vert \hbox {x}\vert \). The levels of f have the form \(\{ \hbox {--a,a}\}\) for a\(\upepsilon \mathbb {R}\). Assume that the group \(\hbox {G}_{1}\) is non-orientable, i.e., there exists no subgroup of \(\hbox {G}_{1}\) with index 2 (e.g., the additive group \(\mathbb {R}\) is non-orientable). Thus it is impossible that \(\hbox {S}_{\mathrm{1k}}=\{ \hbox {--a,a}\}\) for \(\hbox {a}\ne 0\). From here every \(\hbox {S}_{\mathrm{1k}}\) in the form \(\hbox {F}_{1}\) in (2) is a singelton. This yields that the constant functions \(\hbox {F}_{1}(\hbox {x,t})=\hbox {c} \upepsilon \mathbb {R}\) are the only solutions of (13) in this case.

Let \(\hbox {S}_{1}\) and f be as above. Assume that \(\hbox {G}_{\mathrm{1}}\) is orientable by the subgroup \(G_{1}^{*}\) (like the additive group of integers by even integers). We have in this case, except for the constant solutions, the non-constant solutions of (13), too, e.g., the solution of the form

$$\begin{aligned} \hbox {F}_{1}(\hbox {x,t})=\left\{ \begin{array}{ll} \hbox {--}1&{}\quad \hbox { for } \hbox {x}=\hbox {--}1, \hbox {t}\upepsilon \,G_{1}^{*} \hbox { or or } \hbox {x}=1, \hbox {t}\upepsilon \hbox {G}_{1}\backslash \,G_{1}^{*},\\ 1 &{}\quad \hbox { for } \hbox {x}=\hbox {--}1, \hbox {t}\upepsilon \hbox {G}_{1}\backslash \,G_{1}^{*} \hbox { or } \hbox {x}=1, \hbox {t}\upepsilon \, G_{1}^{*},\\ \hbox {c}\upepsilon \mathbb {R}&{}\quad \hbox { for } \hbox {x}\upepsilon \mathbb {R}\backslash \{\hbox {--}1,1\} , \hbox {t}\upepsilon \hbox {G}_{1}. \end{array}\right. \end{aligned}$$

5 Unknown homomorphism h

Theorem 4

If a function \(\hbox {F:S}\times \hbox {G} \rightarrow \hbox {S}\) is of the form (6) and function f is of the form (8), then the equation

$$\begin{aligned} \hbox {f}[\hbox {F}(\hbox {x,t})]=\hbox {F}(\hbox {f}(\hbox {x}),\hbox {h}(\hbox {t})) \end{aligned}$$
(14)

has \(\hbox {h}(\hbox {t})=\hbox {t}\) as the only solution if \(\upgamma (\hbox {N}_{1})\not \subset \hbox {N}_{2}\).

If \(\upgamma (\hbox {N}_{1})\subset \hbox {N}_{2}\), then every function \(\hbox {h:G}\rightarrow \hbox {G}\) is a solution of (14).

Proof

If \(\upgamma (\hbox {N}_{1})\not \subset \hbox {N}_{2}\), then there exists \(\hbox {m}\upepsilon \hbox {N}_{1}\) such that \(\upgamma (\hbox {m})\upepsilon \hbox {N}_{1}\). Assume that the function h is a solution of (1). Then for \(\hbox {x}\upepsilon \hbox {I}_{\mathrm{m}}\) we have \(\hbox {f}(\hbox {x})=\text{ b }_{{\upgamma }\left( {\text{ m }} \right) }^{-1} [\hbox {b}_{\mathrm{m}}(\hbox {x})+\updelta (\hbox {m})]\upepsilon \hbox {S}_{{\upgamma (\mathrm{m})}}\), \(\hbox {F}(\hbox {x,t})= \text{ b }_{\mathrm{m}}^{-1} [\hbox {b}_{\mathrm{m}}(\hbox {x})+\hbox {t}]\upepsilon \hbox {S}_{\mathrm{m}}\). From here (14) has the form

$$\begin{aligned} \text{ b }_{{\upgamma }\left( {\text{ m }} \right) }^{-1} [\hbox {b}_{\mathrm{m}}(\hbox {x})+\hbox {t} +\updelta (\hbox {m})]= \text{ b }_{{\upgamma }\left( {\text{ m }} \right) }^{-1} [\hbox {b}_{\mathrm{m}}(\hbox {x})+\updelta (\hbox {m})+ \hbox {h}(\hbox {t})], \end{aligned}$$

thus \(\hbox {h}(\hbox {t})=\hbox {t}\). This homomorphism is a solution of (1) by Example 3.

If \(\upgamma (\hbox {N}_{1})\subset \hbox {N}_{2}\), then \(\upgamma (\hbox {n})\upepsilon \hbox {N}_{1}\) for every \(\hbox {n}\upepsilon \hbox {N}\). From here for every function \(\hbox {h:G}\rightarrow \hbox {G}\)

  1. 1/

    if \(\hbox {x}\upepsilon \hbox {N}_{2}\), then \(\hbox {f}(\hbox {x})=\upgamma (\hbox {x})\) and we obtain \(\hbox {f}[\hbox {F}(\hbox {x,t})]=\hbox {f}(\hbox {x})=\upgamma (\hbox {x})=\hbox {F}(\upgamma (\hbox {x}),\hbox {h}(\hbox {t}))\),

  2. 2/

    if \(\hbox {x}\upepsilon \hbox {I}_{\mathrm{n}}\), then \(\hbox {f}(\hbox {x})=\upgamma (\hbox {n})\) and since \(\hbox {F}(\hbox {x,t})\upepsilon \hbox {I}_{\mathrm{n}}\) we obtain \(\hbox {f}[\hbox {F}(\hbox {x,t})]=\upgamma (\hbox {x})=\hbox {F}(\upgamma (\hbox {x}),\hbox {h}(\hbox {t}))= \hbox {F}(\hbox {f}(\hbox {x}),\hbox {h}(\hbox {t}))\).

\(\square \)

Proposition

Let functions \(\hbox {F}_{\mathrm{i}}\) be as in (2). If there exists \(\hbox {x}_{0}\upepsilon \hbox {S}_{1}\) such that \(\hbox {F}_{1}(\hbox {x}_{0}, \mathbf . ):\hbox {G}_{1}\rightarrow \hbox {S}_{1}\) is a constant function and \(\hbox {F}_{2}(\hbox {f}(\hbox {x}_{0}), \mathbf . ):\hbox {G}_{2}\rightarrow \hbox {S}_{2}\) is an injection, then \(\hbox {h}(\hbox {t})=0\) for \(\hbox {t}\upepsilon \hbox {G}_{1}\) is the only solution of (1).

The function \(\hbox {h}(\hbox {t})=0\) for \(\hbox {t}\upepsilon \hbox {G}_{1}\) is a solution of (1) if and only if the function f is constant on every \(\hbox {S}_{\mathrm{1k}}\) for \(\hbox {k}\upepsilon \hbox {K}_{1}\). In this case other solutions h can exist.

Proof

We have \(\hbox {f}[\hbox {F}_{1}(\hbox {x}_{0},\hbox {t})]=\hbox {f}[\hbox {F}_{1}(\hbox {x}_{0},0)]=\hbox {f}(\hbox {x}_{0})\). For \(\hbox {f}(\hbox {x}_{0})\upepsilon \hbox {S}_{\mathrm{2k}}\) for some \(\hbox {k}\upepsilon \hbox {K}_{2}\) we obtain \(\hbox {F}_{2}(\hbox {f}(\hbox {x}_{0}),\hbox {h}(\hbox {t}))=\text{ b }_{2{\mathrm{k}}}^{-1} [\hbox {b}_{\mathrm{2k}}(\hbox {f}(\hbox {x}_{0})+\hbox {h}(\hbox {t})]\), where \(\hbox {b}_{\mathrm{2k}}\) is a bijection from \(\hbox {S}_{\mathrm{2k}}\) onto \(\hbox {G}_{2}\). From here \(\hbox {b}_{\mathrm{2k}}(\hbox {f}(\hbox {x}_{0}))=\hbox {b}_{\mathrm{2k}}(\hbox {f}(\hbox {x}_{0}))+\hbox {h}(\hbox {t})\). This yields that \(\hbox {h}(\hbox {t})=0\) for \(\hbox {t}\upepsilon \hbox {G}_{1}\).

If \(\hbox {h}(\hbox {t})=0\), then \(\hbox {f}[\hbox {F}_{1}(\hbox {x,t})]=\hbox {F}_{2}(\hbox {f}(\hbox {x}),0)=\hbox {f}(\hbox {x})\). Since \(\hbox {F}_{1}(\hbox {x},\hbox {G}_{1})=\hbox {S}_{\mathrm{1k}}\) for \(\hbox {x}\upepsilon \hbox {S}_{\mathrm{1k}}\), f is constant on \(\hbox {S}_{\mathrm{1k}}\). The inverse implication is evident. If \(\hbox {f}(\hbox {x})=\hbox {c} \upepsilon \hbox {S}_{2}\) for \(\hbox {x}\upepsilon \hbox {S}_{1}\) and \(\hbox {F}_{2}(\hbox {c,t})=\hbox {c}\) for \(\hbox {t}\upepsilon \hbox {G}_{2}\), the every function \(\hbox {h:G}_{1}\rightarrow \hbox {G}_{2}\) is a solution of (1). \(\square \)

Lemma 1

Let \(\hbox {F:S}\times \hbox {G} \rightarrow \hbox {S}\), where G is a group, be a solution of the translation equation such that \(\hbox {F}(\hbox {x},0)=\hbox {x}\) for \(\hbox {x}\upepsilon \hbox {S}\). A function \(\hbox {g:G}\rightarrow \hbox {G}\) (not necessarly a homomorphism) is a solution of the equation

$$\begin{aligned} \hbox {F}(\hbox {x,t})=\hbox {F}(\hbox {x},\hbox {g}(\hbox {t})) \end{aligned}$$
(15)

if and only if \(\hbox {g}(\hbox {t})\hbox {--t}\upepsilon \cap _{\mathrm{x}\upepsilon \mathrm{S}}\{ \hbox {s}\upepsilon \hbox {G:F}(\hbox {x,s})=\hbox {x}\}\) for \(\hbox {t}\upepsilon \hbox {G}\).

Proof

If \(\hbox {g}(\hbox {t})\hbox {--t}\upepsilon \cap _{\mathrm{x}\upepsilon \mathrm{S}}\{ \hbox {s}\upepsilon \hbox {G:F}(\hbox {x,s})=\hbox {x}\}\), then

$$\begin{aligned} \hbox {F}(\hbox {x,g}(\hbox {t}))=\hbox {F}(\hbox {F}(\hbox {x},\hbox {g}(\hbox {t})\hbox {--t}),\hbox {t})= \hbox {F}(\hbox {x,t}). \end{aligned}$$

If \(\hbox {F}(\hbox {x,g}(\hbox {t}))=\hbox {F}(\hbox {x,t})\), then \(\hbox {g}(\hbox {t})\hbox {--t}\upepsilon \cap _{\mathrm{x}\upepsilon \mathrm{S}}\{ \hbox {s}\upepsilon \hbox {G:F}(\hbox {x,s})=\hbox {x}\}\) since

$$\begin{aligned} \hbox {F}(\hbox {x,g}(\hbox {t})\hbox {--t})= \hbox {F}(\hbox {F}(\hbox {x,g}(\hbox {t})),\hbox {--t})=\hbox {F}(\hbox {F}(\hbox {x,t}),\hbox {--t})=\hbox {F}(\hbox {x},0)=\hbox {x}. \end{aligned}$$

\(\square \)

Lemma 2

Let a function F be of the form \(\hbox {F}(\hbox {x,t})= b_{k}^{-1} (\hbox {b}_{\mathrm{k}}(\hbox {x})+\hbox {t})\) for \(\hbox {x}\upepsilon \hbox {S}_{\mathrm{k}}\), \(\hbox {k}\upepsilon \hbox {K}\), \(\hbox {t}\upepsilon \hbox {G}\), where \(\hbox {S}=\cup _{\mathrm{k}\upepsilon \mathrm{K}}\hbox {S}_{\mathrm{k}}\), \(\hbox {S}_{\mathrm{k}}\) are disjoint and \(\hbox {b}_{\mathrm{k}}\) is a bijection from \(\hbox {S}_{\mathrm{k}}\) to \(\hbox {G/G}_{\mathrm{k}}\) (see (2)). Then

$$\begin{aligned} \cap _{\mathrm{x}\upepsilon \mathrm{S}}\{ \hbox {t}\upepsilon \hbox {G:F}(\hbox {x,t})=\hbox {x}\} =\cap _{\mathrm{u}\upepsilon \mathrm{G}}\cap _{\mathrm{k}\upepsilon \mathrm{K}}(\hbox {--u}+\hbox {G}_{\mathrm{k}}+\hbox {u}). \end{aligned}$$

Proof

Let \(\hbox {s}\upepsilon \{ \hbox {t}\upepsilon \hbox {G:F}(\hbox {x,t})=\hbox {x}\}\) for every \(\hbox {x}\upepsilon \hbox {S}\). We have \(\hbox {G}_{\mathrm{k}}+\hbox {u}\upepsilon \hbox {G/G}_{\mathrm{k}}\) for every \(\hbox {u}\upepsilon \hbox {G}\), \(\hbox {k}\upepsilon \hbox {K}\). There exists \(\hbox {y}\upepsilon \hbox {S}_{\mathrm{k}}\) such that \(\hbox {b}_{\mathrm{k}}(\hbox {y})=\hbox {G}_{\mathrm{k}}+\hbox {u}\). Since \(\hbox {s}\upepsilon \{ \hbox {t}\upepsilon \hbox {G:F}(\hbox {y,t})=\hbox {y}\}\), \(\hbox {y}=\hbox {F}(\hbox {y,s})=b_{k}^{-1} (\hbox {b}_{\mathrm{k}}(\hbox {y})+\hbox {s}\)). From here \(\hbox {G}_{\mathrm{k}}+\hbox {u}=\hbox {G}_{\mathrm{k}}+\hbox {u}+\hbox {s}\). This yields that \(\hbox {--u}+\hbox {G}_{\mathrm{k}}+\hbox {u}=[\hbox {--u}+\hbox {G}_{\mathrm{k}}+\hbox {u}]+\hbox {s}\), thus \(\hbox {s}\upepsilon [\hbox {--u}+\hbox {G}_{\mathrm{k}}+\hbox {u}]\) for every \(\hbox {u}\upepsilon \hbox {G}\), \(\hbox {k}\upepsilon \hbox {K}\).

Let \(\hbox {s}\upepsilon (\hbox {--u}+\hbox {G}_{\mathrm{k}}+\hbox {u})\) for every \(\hbox {u}\upepsilon \hbox {G}\), \(\hbox {k}\upepsilon \hbox {K}\) and \(\hbox {x}\upepsilon \hbox {S}_{\mathrm{k}}\). Then \(\hbox {b}_{\mathrm{k}}(\hbox {x})=\hbox {G}_{\mathrm{k}}+\hbox {a}(\hbox {x})\) for some \(\hbox {a}(\hbox {x})\upepsilon \hbox {G}\). From here \(\hbox {b}_{\mathrm{k}}(\hbox {x})+\hbox {s}=\hbox {a}(\hbox {x})+[\hbox {--a}(\hbox {x})+\hbox {G}_{\mathrm{k}}+\hbox {a}(\hbox {x})]+\hbox {s}=\hbox {b}_{\mathrm{k}}(\hbox {x})\), thus \(\hbox {F}(\hbox {x,s})= b_{k}^{-1} (\hbox {b}(\hbox {x})+\hbox {s})=\hbox {x}\). \(\square \)

Note that if \(\cap _{\mathrm{u}\upepsilon \mathrm{G}}\cap _{\mathrm{k}\upepsilon \mathrm{K}}(\hbox {--u}+\hbox {G}_{\mathrm{k}}+\hbox {u})=\{ 0\}\), then \(\hbox {g}(\hbox {t})=\hbox {t}\) for \(\hbox {t}\upepsilon \hbox {G}\) is the only solution of (15).

If the group G is abelian, then the function g in Lemma 1 is a homomorphism if and only if the function g(t)–t is a homomorphism. We have thus by Lemmas 1 and 2 the following theorem.

Theorem 5

Let \(\hbox {F}\) be as in Lemma 2. Assume that the group \(\hbox {G}\) is abelian. The homomorphism \(\hbox {h:G}\rightarrow \hbox {G}\) is a solution of Eq. (15) if and only if \(\hbox {h(t)}=\hbox {h}_{1}(\hbox {t})+\hbox {t}\) for \(\hbox {t}\upepsilon \hbox {G}\), where \(\hbox {h}_{1}\) is an arbitrary homomorphism from \(\hbox {G}\) to \(\cap _{\mathrm{k}\upepsilon \mathrm{K}}\hbox {G}_{\mathrm{k}}\).

Remarks

1/ If the group G is not abelian, then Theorem 5 is not true since the difference of two homomorphism may not be a homomorphism. E.g., for the smallest non-abelian group given in the table below and for \(\hbox {h}(\hbox {t})=\hbox {--a}+\hbox {t}+\hbox {a}\) the function \(\hbox {h}_{1}(\hbox {t})=\hbox {h}(\hbox {t})\hbox {--t}\) is not a homomorphism. Indeed, \(\hbox {h}_{1}(\hbox {a}+\hbox {b})=\hbox {c}\ne \hbox {d}=\hbox {h}_{1}(\hbox {a})+\hbox {h}_{1}(\hbox {b})\).

figure b

The assumption that G is abelian in the above Theorem 5 can not be replaced by the assumption that \(\hbox {G}_{\mathrm{k}}\) are abelian in F for \(\hbox {k}\upepsilon \hbox {K}\). We give an example below.

Let \(\hbox {S}=\{ 1,2\}\) and \(\hbox {K}=\{ 1\}\). Let G be a group as in the table above. Put \(\hbox {b}_{1}(1)=\{ 0,\hbox {c,d}\}\), \(\hbox {b}_{1}(2)= \{ \hbox {a,b,e}\}\) and \(\hbox {F}(\hbox {x,t})= b_{1}^{-1} (\hbox {b}_{1}(\hbox {x})+\hbox {t})\) for \(\hbox {x}\upepsilon \hbox {S}\), \(\hbox {t}\upepsilon \hbox {G}\). Then \(\hbox {G}_{1}=\{ 0,\hbox {c,d}\}\) is an abelian group, the homomrphism \(\hbox {h}(\hbox {t})= \hbox {--a}+\hbox {x}+\hbox {a}\) is a solution of (15) and h(t)–t is not a homomorphism.

The tables of these functions F(x,t), h(t) and F(x,h(t)) are shown below.

figure c
figure d

2/ If a homomorphism \(\hbox {h:G}\rightarrow \hbox {G}\) is a solution of (15), then

$$\begin{aligned} \hbox {h}(\hbox {t})=\hbox {h}(\hbox {s}) \Rightarrow \hbox {F}(\hbox {x,t})=\hbox {F}(\hbox {x,s}) \hbox { for } \hbox {x}\upepsilon \hbox {S}, \hbox {t},\hbox {s}\upepsilon \hbox {G}. \end{aligned}$$
(16)

Examples

12.:

An equation of the form (15) can have a solution which is not the identity function. In fact, let \(\hbox {S}=\hbox {G}=\mathbb {R}\) and let \(\mathfrak {b}_{1},\mathfrak {b}_{2}\) be different elements of the Hamel base H of \(\mathbb {R}\) over \(\mathbb {Q}\). Let \(\hbox {a,h}:\mathbb {R}\rightarrow \mathbb {R}\) be additive functions such that \(\hbox {a}(\mathfrak {b}_{1})=\hbox {a}(\mathfrak {b}_{2})= \mathfrak {b}_{1}\), \(\hbox {h}(\mathfrak {b}_{1})= \mathfrak {b}_{2}\), \(\hbox {h}(\mathfrak {b}_{2})= \mathfrak {b}_{1}\), \(\hbox {a}(\hbox {t})=\hbox {h}(\hbox {t})=0\) for \(\hbox {t}\upepsilon \hbox {H}\backslash \{ \mathfrak {b}_{1}, \mathfrak {b}_{2}\}\). We have for \(\hbox {t}=\hbox {q}_{1}\mathfrak {b}_{1}+\hbox {q}_{2}\mathfrak {b}_{2}+\hbox {q}_{3}\mathfrak {b}_{3}+\ \cdots + \hbox {q}_{\mathrm{n}}\mathfrak {b}_{\mathrm{n}}\), where \(\hbox {q}_{\mathrm{i}}\upepsilon \mathbb {Q}\), \(\mathfrak {b}_{\mathrm{i}}\upepsilon \hbox {H}\) for \(\hbox {i}=1,\ \ldots ,\hbox {n}\), that

$$\begin{aligned} \hbox {a}(\hbox {h}(\hbox {t}))&=\hbox {a}(\hbox {q}_{1}\hbox {h}(\mathfrak {b}_{1}){+}\hbox {q}_{2}\hbox {h}(\mathfrak {b}_{2})) =\hbox {a}(\hbox {q}_{1}\mathfrak {b}_{2}{+}\hbox {q}_{2}\mathfrak {b}_{1}) =\hbox {q}_{1}\hbox {a}(\mathfrak {b}_{2}){+}\hbox {q}_{2}\hbox {a}(\mathfrak {b}_{1}) =(\hbox {q}_{1}{+}\hbox {q}_{2})\mathfrak {b}_{1}\\&=\hbox {q}_{1}\hbox {a}(\mathfrak {b}_{1})+\hbox {q}_{2}\hbox {a}(\mathfrak {b}_{2})=\hbox {a}(\hbox {q}_{1}\mathfrak {b}_{1}+\hbox {q}_{2}\mathfrak {b}_{2}+\hbox {q}_{3}\mathfrak {b}_{3}+\ \cdots + \hbox {q}_{\mathrm{n}}\mathfrak {b}_{\mathrm{n}})=\hbox {a}(\hbox {t}). \end{aligned}$$

From here for \(\hbox {F}(\hbox {x,t})=\hbox {x}+\hbox {a}(\hbox {t})\) we obtain \(\hbox {F}(\hbox {x,h}(\hbox {t}))=\hbox {x}+\hbox {a}(\hbox {h}(\hbox {t}))=\hbox {x}+\hbox {a}(\hbox {t})=\hbox {F}(\hbox {x,t})\). The function \(\hbox {h}_{1}\) of Theorem 6 is here of the form \(\hbox {h}_{1}(\hbox {t})=(\hbox {q}_{2}\hbox {--}\hbox {q}_{1})\mathfrak {b}_{1}+(\hbox {q}_{1}\hbox {--}\hbox {q}_{2})\mathfrak {b}_{2}\hbox {--}\hbox {q}_{3}\mathfrak {b}_{3}\hbox {--}\ \cdots \hbox {--}\hbox {q}_{\mathrm{n}}\mathfrak {b}_{\mathrm{n}}\) for t as above.

13.:

If \(\hbox {F}_{\mathrm{i}}(\hbox {x,t})=\hbox {x}\) for \((\hbox {x,t})\upepsilon (\hbox {S}_{\mathrm{i}},\hbox {G}_{\mathrm{i}})\) and \(\hbox {i}=1,2\) and \(\hbox {f}:\hbox {S}_{1}\rightarrow \hbox {S}_{2}\) is an arbitrary function, then the arbitrary function \(\hbox {h:G}_{1}\rightarrow \hbox {G}_{2}\) is a solution of (1).

14.:

If functions \(\hbox {F}_{1},\hbox {F}_{\mathrm{2}}\),f are as in Example 1, then Eq. (1) has the form

$$\begin{aligned} \upvarepsilon \hbox {exp}(\hbox {a}+\hbox {tnx}+\hbox {t})=\upvarepsilon \hbox {exp}(\hbox {a}+\hbox {tnx}+\hbox {h}(\hbox {t})). \end{aligned}$$

Thus if \(\upvarepsilon \ne 0\), then \(\hbox {h}(\hbox {t})=\hbox {t}\) is the only solution of (1) and if \(\upvarepsilon =0\), then every function \(\hbox {h}:\mathbb {R}\rightarrow \mathbb {R}\) is a solution of this equation.

15.:

The homomorphism \(\hbox {h}(\hbox {t})=\hbox {t}\) is not a solution of (1) in Example 2.

16.:

If \(\hbox {S}_{1}=\hbox {S}_{2}=\hbox {G}_{1}=\hbox {G}_{2}=\mathbb {Z}\), \(\hbox {F}_{1}(\hbox {x,t})=\hbox {F}_{2}(\hbox {x,t})=\hbox {x}+\hbox {t}\) and \(\hbox {f}(\hbox {x})=2\hbox {x}\), then Eq. (1) has the form \(2(\hbox {x}+\hbox {t})=2\hbox {x}+\hbox {h}(\hbox {t})\). From here \(\hbox {h}(\hbox {t})=2\hbox {t}\) is the only homomorphism which is a solution of (1).

17.:

Let \(\hbox {G}_{1}\) be a semigroupe, let \(\hbox {G}_{2}\) be a semigroupe with the left cancellation property and let \(\hbox {S}_{1}=\hbox {G}_{1}\), \(\hbox {S}_{2}=\hbox {G}_{2}\), \(\hbox {F}_{1}(\hbox {x,t})=\hbox {x}+\hbox {t} :\hbox {G}_{1}\times \hbox {G}_{1}\rightarrow \hbox {G}_{1}\), \(\hbox {F}_{2}(\hbox {u,v})=\hbox {u}+\hbox {v} :\hbox {G}_{2}\times \hbox {G}_{2}\rightarrow \hbox {G}_{2}\). If a function \(\hbox {f}:\hbox {G}_{1}\rightarrow \hbox {G}_{2}\) is a homomorphism, then \(\hbox {h}=\hbox {f}\) is the only solution of Eq. (1). In fact, Eq. (1) has the form \(\hbox {f}(\hbox {x}+\hbox {t})=\hbox {f}(\hbox {x})+\hbox {h}(\hbox {t})\).

6 Conditional equation (11)

The conditional equation (11) is said to be the equation associated with the geometric concomitant equation (1). If functions \(\hbox {f},\hbox {F}_{1},\hbox {F}_{2},\hbox {h}\) satisfy (1), then \(\hbox {f},\hbox {F}_{1},\hbox {h}\) are evidently solutions of (11) and if \(\hbox {f},\hbox {F}_{1},\hbox {h}\) satisfy (11), then there exists \(\hbox {F}_{2}:\hbox {S}_{2}\times \hbox {h}(\hbox {G}_{1})\) such that \(\hbox {f},\hbox {F}_{1},\hbox {h},\hbox {F}_{2}\) are solutions of (1) by Theorem 3. A solution of the translation equation \(\hbox {F}_{2}\) with this property and defined on \(\hbox {S}_{2}\times \hbox {G}_{2}\) may not exist (see Example 8). We consider the conditional equation (11) (without the index ,,1” in \(\hbox {F}_{1})\) in the cases if

  1. (i)

    the homomorphism h is injective and \(\hbox {G}_{1}=\hbox {G}_{2}\)

    or

  2. (ii)

    the function f is injective and \(\hbox {S}_{1}=\hbox {S}_{2}\).

In case (i) the functions f,h,F are solutions of (11) if and only if

$$\begin{aligned} \hbox {f}(\hbox {x})=\hbox {f}(\hbox {y}) \Rightarrow \hbox {f}[\hbox {F}(\hbox {x,t})]=\hbox {f}[\hbox {F}(\hbox {y,t})] \hbox { for } \hbox {x,y,t}\upepsilon \hbox {G}. \end{aligned}$$
(17)

In case (ii) the functions f,h F are solutions of (11) if and only if

$$\begin{aligned} \hbox {h}(\hbox {t})=\hbox {h}(\hbox {s}) \Rightarrow \hbox {F}(\hbox {x,t})=\hbox {F}(\hbox {x,s}) \hbox { for } \hbox {x}\upepsilon \hbox {S}, \hbox {t},\hbox {s}\upepsilon \hbox {G}. \end{aligned}$$
(18)

Theorem 6

Let G be a group. A function \(\hbox {f:S}\rightarrow \hbox {S}\) is a solution of the conditional equation (17), where \(\hbox {F}(\hbox {x,t})=\hbox {b}^{-1}(\hbox {b}(\hbox {x})+\hbox {t})\) and \(\hbox {b:S}\rightarrow \hbox {G}\) is a bijection, if and only if \(\hbox {f}(\hbox {x})=\hbox {b}^{-1}\Phi ([\hbox {b}(\hbox {x})])\) for \(\hbox {x}\upepsilon \hbox {S}\), where \([\hbox {x}]\upepsilon \hbox {G/G}^{*}\) for some subgroup \(\hbox {G}^{*}\) of \(\hbox {G}\) and \(\Phi \) is an injection from \(\hbox {G/G}^{*}\) to \(\hbox {G}\).

Proof

If \(\hbox {b}^{-1}\Phi ([\hbox {b}(\hbox {x})])=\hbox {b}^{-1}\Phi ([\hbox {b}(\hbox {y})])\), then \([\hbox {b}(\hbox {x})]=[\hbox {b}(\hbox {y})]\). From here \((\hbox {b}(\hbox {x})+\hbox {t})\hbox {--}(\hbox {b}(\hbox {y})+\hbox {t})= \hbox {b}(\hbox {x})\hbox {--b}(\hbox {y})\upepsilon \hbox {G}^{*}\) for every \(\hbox {t}\upepsilon \hbox {G}\). This yields that \([\hbox {b}(\hbox {x})+\hbox {t}]=[\hbox {b}(\hbox {y})+\hbox {t}]\). This implies that

$$\begin{aligned} \hbox {b}^{-1}\Phi ([\hbox {b}(\hbox {F}(\hbox {x,t}))])=\hbox {b}^{-1} \Phi ([\hbox {b}(\hbox {x})+\hbox {t}])=\hbox {b}^{-1}\Phi ([\hbox {b}(\hbox {y})+\hbox {t}])=\hbox {b}^{-1}\Phi ([\hbox {b}(\hbox {F}(\hbox {y,t}))]). \end{aligned}$$

Analogously, if f is a solution of (15), then \(\upvarphi (\hbox {u})=\hbox {bfb}^{-1}(\hbox {u})\) for \(\hbox {u}\upepsilon \hbox {G}\) is a solution of the implication

$$\begin{aligned} \upvarphi (\hbox {u})=\upvarphi (\hbox {v}) \Rightarrow \upvarphi (\hbox {u}+\hbox {t})=\upvarphi (\hbox {v}+\hbox {t}). \end{aligned}$$

We define a relation R on \(\hbox {G: uRv}\Leftrightarrow [\upvarphi (\hbox {u})=\upvarphi (\hbox {v})]\). It is an equivalence relation and uRv implies \((\hbox {u}+\hbox {t})\hbox {R}(\hbox {v}+\hbox {t})\). From here the family of equivalence classes of R is the same as the family \(\hbox {G/G}^{*}\) for some subgroup \(\hbox {G}^{*}\) [3]. Let S be a selector of this family. Put \(\Phi ([\hbox {u}])=\upvarphi (\hbox {u}_{0})\), where \(\hbox {u}_{0}\upepsilon \hbox {S}\cap [\hbox {u}]\). Since \(\hbox {u}_{0}\upepsilon [\hbox {u}]\), \([\hbox {u}]=[\hbox {u}_{0}]\). For \(\hbox {u}\upepsilon [\hbox {u}]=[\hbox {u}_{0}]\) we have \(\upvarphi (\hbox {u})=\upvarphi (\hbox {u}_{0})\), thus \(\upvarphi (\hbox {u})= \Phi ([\hbox {u}])\). From here \(\hbox {f}(\hbox {x})=\hbox {b}^{-1}\Phi ([\hbox {b}(\hbox {x})])\). \(\square \)

Example

18.:

Consider the conditional equation (16) where F is a function as in (2). The function \(\hbox {f}(\hbox {x})= \Phi (\hbox {k})\) for \(\hbox {x}\upepsilon \hbox {S}_{\mathrm{1k}}\), where \(\Phi \) is a function from \(\hbox {K}_{1}\) to \(\hbox {S}_{1}\), is a solution of this condition. In fact, if \(\hbox {f}(\hbox {x})=\hbox {f}(\hbox {y})\), \(\hbox {f}(\hbox {x})=\Phi (\hbox {k})\) for \(\hbox {x}\upepsilon \hbox {S}_{\mathrm{1k}}\) and \(\hbox {f}(\hbox {y})=\Phi (\hbox {l})\) for \(\hbox {y}\upepsilon \hbox {S}_{\mathrm{1l}}\), then \(\Phi (\hbox {k})=\Phi (\hbox {l})\). Since \(\hbox {F}_{1}(\hbox {x,t})\upepsilon \hbox {S}_{\mathrm{1k}}\) for \(\hbox {t}\upepsilon \hbox {G}_{1}\), \(\hbox {f}[\hbox {F}_{1}(\hbox {x,t})]= \Phi (\hbox {k})\). Analogously \(\hbox {f}[\hbox {F}_{1}(\hbox {y,t})]=\Phi (\hbox {l})\). From here \(\hbox {f}[\hbox {F}_{1}(\hbox {x,t})]=\hbox {f}[\hbox {F}_{1}(\hbox {y,t})]\).

Example

19.:

Let \(\hbox {F}(\hbox {x,t})=\hbox {x}+\hbox {t}\) be a function from \(\mathbb {R}\times \mathbb {R}\) to \(\mathbb {R}\), let G be the additive group of real numbers. The function \(\Phi ([\hbox {x}])=\hbox {M}(\hbox {x})\) for \([\hbox {x}]\upepsilon \mathbb {R}/\mathbb {Z}\), where M(x) is the mantissa of \(\hbox {x}\upepsilon \mathbb {R}\), is an injection from \(\mathbb {R}/\mathbb {Z}\) to \(\mathbb {R}\). From here M(x) is a solution of (15) and it is not a solution of Eq.  (7).

Proposition

Let \(\hbox {G}\) be a group and let \(\hbox {F:S}\times \hbox {G} \rightarrow \hbox {S}\) be a solution of the translation equation such that \(\hbox {F}(\hbox {x},0)=\hbox {x}\) for \(\hbox {x}\upepsilon \hbox {S}\). A homomorphism \(\hbox {h:G}\rightarrow \hbox {G}\) is a solution of the conditional equation (18) if and only if

$$\begin{aligned} \hbox {Kern}(\hbox {h})\subset \cap _{\mathrm{x}\upepsilon \mathrm{S}}\{ \hbox {s}\upepsilon \hbox {G:F}(\hbox {x,s})=\hbox {x}\}. \end{aligned}$$
(19)

Proof

If h is a solution of (18) and \(\hbox {t}\upepsilon \hbox {Kern}(\hbox {h})\), then \(\hbox {h}(\hbox {t})=0=\hbox {h}(0)\), thus \(\hbox {F}(\hbox {x,t})=\hbox {F}(\hbox {x},0)=\hbox {x}\) for every \(\hbox {x}\upepsilon \hbox {S}\). Fom here \(\hbox {t}\upepsilon \cap _{\mathrm{x}\upepsilon \mathrm{S}}\{ \hbox {s}\upepsilon \hbox {G:F}(\hbox {x,s})=\hbox {x}\}\).

Assume that (19) is true. If \(\hbox {h}(\hbox {t})=\hbox {h}(\hbox {s})\), then \(\hbox {h}(\hbox {t--s})=0\), thus \(\hbox {t--s}\upepsilon \hbox {Kern}(\hbox {h})\). This yields that \(\hbox {F}(\hbox {x,t--s})=\hbox {x}\) for \(\hbox {x}\upepsilon \hbox {S}\). From here \(\hbox {F}(\hbox {x,t})=\hbox {F}(\hbox {F}(\hbox {x,t--s}),\hbox {s})=\hbox {F}(\hbox {x,s})\). \(\square \)

Example

20.:

Let S,G,H be as in Example 10. Let \(\hbox {F}(\hbox {x}+\hbox {t})=\hbox {x}+\hbox {t}\). For the homomorphism

$$\begin{aligned} \hbox {h}(\hbox {q}_{1}\mathfrak {b}_{1}+\hbox {q}_{2}\mathfrak {b}_{2}+\hbox {q}_{3}\mathfrak {b}_{3}+\ \cdots +\hbox {q}_{\mathrm{n}}\mathfrak {b}_{\mathrm{n}})= \hbox {q}_{2}\mathfrak {b}_{1}+\hbox {q}_{1}\mathfrak {b}_{2}+\hbox {q}_{3}\mathfrak {b}_{3}+\ \cdots +\hbox {q}_{\mathrm{n}}\mathfrak {b}_{\mathrm{n}} \end{aligned}$$

we have \(\hbox {Kern}(\hbox {h})=\{ 0\}\), h satisfies (19). This implies that h is a solution of (18). This function h is evidently not a solution of (17).

Example

21.:

Injection from \(\mathbb {R}\) to \(\mathbb {R}\) and constant function are the only solutions of (17) for the geometric object \(\hbox {x}=\hbox {v}_{2}/\hbox {v}_{1}\), where \(\hbox {v}_{1},\hbox {v}_{\mathrm{2}}\) are the coordinates of the 2-dimensional contravariant vector. Indeed, this object has the transformation law of the form \(\frac{A_{1}^{1} +A_{2}^{1} x}{A_{1}^{2} +A_{2}^{2} x}\) [1]. Thus (17) is of the form

$$\begin{aligned} \hbox {f}(\hbox {x})=\hbox {f}(\hbox {y}) \Rightarrow \hbox {f}\left( \frac{A_{1}^{1} +A_{2}^{1} x}{A_{1}^{2} +A_{2}^{2} x}\right) =\hbox {f}\left( \frac{A_{1}^{1} +A_{2}^{1} y}{A_{1}^{2} +A_{2}^{2} y}\right) . \end{aligned}$$
(20)

For \(A_{2}^{1} =A_{1}^{2} =1\) and \(A_{2}^{2} =0\) we have

$$\begin{aligned} \hbox {f}(\hbox {x})=\hbox {f}(\hbox {y}) \Rightarrow \hbox {f}(A_{1}^{1}+x)=\hbox {f}(A_{1}^{1}+y) \end{aligned}$$

for every \(\hbox {x}, \hbox {y}, A_{1}^{1} \upepsilon \mathbb {R}\). From here the family F of the levels of f is invariant under arbitrary translations. This yields that this family \(F=\mathbb {R}/\mathbb {R}^{*}\) for a subgroupe \(\mathbb {R}^{*}\) of \(\mathbb {R}\). Assume that \(\{ 0\} \ne \mathbb {R}^{*}\ne \mathbb {R}\). This implies that there exist \(\hbox {x}_{1},\hbox {x}_{2}\) such that \(\hbox {x}_{1}\ne 0\) and \(\hbox {f}(0)= \hbox {f}(\hbox {x}_{1})\ne \hbox {f}(\hbox {x}_{2})\). We have by (20) that \(\hbox {f}(\hbox {x})=\hbox {f}(\hbox {y}) \Rightarrow \hbox {f}(\hbox {ax})=\hbox {f}(\hbox {ay})\) for every x,y,a\(\upepsilon \mathbb {R}\). From here

$$\begin{aligned} \hbox {f}(0)=\hbox {f}\left( \frac{x_{2} }{x_{1} } \mathbf . 0\right) =\hbox {f}\left( \frac{x_{2} }{x_{1} } \hbox {x}_{1}\right) =\hbox {f}(\hbox {x}_{2}), \end{aligned}$$

thus a contradiction. If \(\mathbb {R}^{*}=\{ 0\}\), then f is an injection. If \(\mathbb {R}^{*}=\mathbb {R}\), then f is a constant function.