Skip to main content
Log in

Spacetime Linear Canonical Transform and the Uncertainty Principles

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

The linear canonical transform (LCT) is a type of integral transform that is widely used as an analytical tool in fields, such as applied mathematics, signal processing, optics, quantum physics, and filter design. In this article, we introduce an extension of the linear canonical transform to functions in the spacetime geometric algebra, termed as the spacetime linear canonical transform. We achieve this by utilizing the Fourier transformation framework in space-time algebra, while taking a novel hybrid Fourier–LCT kernel. The proposed transform provides a flexible representation of information in the spacetime linear canonical domain, which lies between the Minkowski spacetime and the spacetime Fourier frequency domain. We investigate the fundamental properties of the proposed transform, including the Plancherel theorem, uniform continuity, and partial derivatives. Furthermore, we establish several uncertainty inequalities using the observer-related spacetime split, including Heisenberg’s uncertainty principle, Hardy’s theorem, and the Hausdorff–Young’s inequality. The spacetime linear canonical transform offers a novel approach for the analysis of spacetime algebra-valued signals and holds significant potential for future research and applications in diverse fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Hestenes, D.: Space-Time Algebra, 2nd edn. Birkhäuser, Basel (2015)

    Book  MATH  Google Scholar 

  2. Hitzer, E., Nitta, T., Kuroe, Y.: Applications of Clifford’s geometric algebra. Adv. Appl. Clifford Algebra 23, 377–404 (2013). https://doi.org/10.1007/s00006-013-0378-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  4. Hitzer, E., Sangwine, S.J.: Quaternion and Clifford Fourier Transforms and Wavelets. Birkhäuser, Basel (2013). https://doi.org/10.1007/978-3-0348-0603-9

    Book  MATH  Google Scholar 

  5. Sommer, G.: Geometric Computing with Clifford Algebras. Springer, Berlin (2001). https://doi.org/10.1007/978-3-662-04621-0

    Book  MATH  Google Scholar 

  6. Hitzer, E.: Special relativistic Fourier transformation and convolutions. Math. Methods Appl. Sci. 42, 2244–2255 (2019). https://doi.org/10.1002/mma.5502

    Article  MathSciNet  MATH  Google Scholar 

  7. El Haoui, Y., Hitzer, E., Fahlaoui, S.: Heisenberg’s and Hardy’s uncertainty principles for special relativistic space-time fourier transformation. Adv. Appl. Clifford Algebras 30, 69 (2020). https://doi.org/10.1007/s00006-020-01093-5

    Article  MathSciNet  MATH  Google Scholar 

  8. Hitzer, E.: Special affine Fourier transform for space-time algebra signals in detail. Adv. Appl. Clifford Algebras 32, 60 (2022). https://doi.org/10.1007/s00006-022-01228-w

    Article  MathSciNet  MATH  Google Scholar 

  9. El Haoui, Y.: Uncertainty principle for space-time algebra-valued functions. Mediterr. J. Math. 18, 97 (2021). https://doi.org/10.1007/s00009-021-01718-4

    Article  MathSciNet  MATH  Google Scholar 

  10. Healy, J.J., Kutay, M.A., Ozaktas, H.M., Sheridan, J.T.: Linear Canonical Transforms. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-3028-9

    Book  MATH  Google Scholar 

  11. Pei, S.C., Ding, J.J.: Eigen functions of linear canonical transform. IEEE Trans. Signal Process. 50, 11–26 (2002). https://doi.org/10.1109/78.972478

    Article  MathSciNet  MATH  Google Scholar 

  12. Hennelly, B.M., Sheridan, J.T.: Fast numerical algorithm for the linear canonical transform. J. Opt. Soc. Am. A 22(5), 928–937 (2005). https://doi.org/10.1364/JOSAA.22.000928

    Article  MathSciNet  Google Scholar 

  13. Bahri, M., Musdalifah, S.: A version of uncertainty principle for quaternion linear canonical transform. Abstr. Appl. Anal. (2018). https://doi.org/10.1155/2018/8732457. (art 8732457)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kou, K., Ou, J.Y., Morais, J.: On uncertainty principle for quaternionic linear canonical transform. Abstr. Appl. Anal. (2013). https://doi.org/10.1155/2013/725952. (art. 725952)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shah, F.A., Teali, A.A.: Clifford-valued linear canonical transform: convolution and uncertainty principles. Optik 265, 169436 (2022). https://doi.org/10.1016/j.ijleo.2022.169436

    Article  Google Scholar 

  16. Teali, A.A., Shah, F.A.: Two-sided Clifford-valued linear canonical transform: properties and mustard convolution. Adv. Appl. Clifford Algebras (2023). https://doi.org/10.1007/s00006-023-01266-y

    Article  MathSciNet  MATH  Google Scholar 

  17. Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3, 207–238 (1997). https://doi.org/10.1007/BF02649110

    Article  MathSciNet  MATH  Google Scholar 

  18. Mawardi, B., Hitzer, E.: Clifford Fourier transform and uncertainty principle for the Clifford geometric algebra \(C\ell _{(3, 0)}\). Adv. Appl. Clifford Algebras 16(1), 41–61 (2006). https://doi.org/10.1007/s00006-006-0003-x

    Article  MathSciNet  MATH  Google Scholar 

  19. Shah, F.A., Teali, A.A., Tantary, A.Y.: Linear canonical wavelet transform in quaternion domains. Adv. Appl. Clifford Algebras (2021). https://doi.org/10.1007/s00006-021-01142-7

    Article  MathSciNet  MATH  Google Scholar 

  20. Jday, R.: Heisenberg’s and Hardy’s uncertainty principles in real Clifford algebras. Integr. Transforms Spec. Funct. 29(8), 663–677 (2018). https://doi.org/10.1080/10652469.2018.1483363

    Article  MathSciNet  MATH  Google Scholar 

  21. Christensen, J.G.: Uncertainty principles. Master’s Thesis, Institute for Mathematical Sciences, University of Copenhagen (2003)

  22. Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84899-0

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aajaz A. Teali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teali, A.A. Spacetime Linear Canonical Transform and the Uncertainty Principles. Mediterr. J. Math. 20, 301 (2023). https://doi.org/10.1007/s00009-023-02502-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-023-02502-2

Keywords

Mathematics Subject Classification

Navigation