Skip to main content
Log in

The Beurling Theorem in Space–Time Algebras

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this work, the space–time Fourier transform SFT introduced by E. Hitzer satisfies some uncertainty principles of the algebra for space–time \( Cl_{(3,1)} \)-valued signals over the space–time vector space \( {\mathbb {R}}^{(3,1)} \). An analog of the Beurling theorem for the SFT is obtained. As a direct consequence of Beurling’s theorem, other versions of the uncertainty principle, such as Hardy’s, Gelfand–Shilov’s, Cowling–Price’s and Morgan’s theorems are also deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

No data were used to support this study.

References

  1. Beurling, A.: The Collect Works of Arne Beurling, pp. 1–2. Birkhäuser, Boston (1989)

    MATH  Google Scholar 

  2. Bonami, A., Demange, B., Jaming, P.: Hermite functions and uncertainty principles for the Fourier and the widowed Fourier transform. Rev. Mat. Iberoam. 19, 23–55 (2003)

    Article  MATH  Google Scholar 

  3. Cowling, M.G., Price, J.F.: Generalizations of Heisenberg Inequality. Lecture Notes in Mathematics, vol. 992, pp. 443–449. Springer, Berlin (1983)

    Google Scholar 

  4. El Haoui, Y., Fahlaoui, S.: Beurling’s theorem for the quaternion Fourier transform. J. Pseudo-Differ. Oper. Appl. 11, 187–199 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. El Haoui, Y., Hitzer, E., Fahlaoui, S.: Heisenberg’s and Hardy’s uncertainty principles for special relativistic space–time fourier transformation. Adv. Appl. Clifford Algebras 30, 69 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gallardo, L., Trimèche, K.: An \( L^{p} \) version of Hardy’s theorem for the Dunkl transform. J. Aust. Math. Soc. 77(3), 371–385 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gel’fand, I.M., Shilov, G.E.: Generalized Functions, vol. 2, p. 1968. Academic Press, New York (1958). (English translation)

    Google Scholar 

  8. Hardy, G.H.: A theorem concerning Fourier transform. J. Lond. Math. Soc. 8, 227–231 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Hitzer, E.: Quaternion Fourier transform on quaternion fields and generalizations. Adv. Appl. Clifford Algebras 17, 497–517 (2007). https://doi.org/10.1007/s00006-007-0037-8. arXiv:1306.1023

    Article  MathSciNet  MATH  Google Scholar 

  10. Hitzer, E.: Special relativistic Fourier transformation and convolutions. Math. Methods Appl. Sci. 42(7), 2244–2255 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hitzer, E.: The Clifford Fourier transform in real Clifford algebras. In: E. Hitzer, K. Tachibana (eds.) Session on Geometric Algebra and Applications, IKM 2012, Special Issue of Clifford Analysis, Clifford Algebras and their Applications, vol. 2(3), pp. 227–240 (2013). arXiv:1306.0130

  12. Hörmander, L.: A uniqueness theorem of Beurling for Fourier transform pairs. Ark. Math. 2, 237–240 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kawazoe, T., Mejjaoli, H.: Uncertainty principles for the Dunkl transform. Hiroshima Math. J. 40(2), 241–268 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Miyachi, A.: A generalization of Hardy. In: Harmonic Analysis Seminar Held at Izunagoaka Shizuoka-ken, Japan, pp. 44–51 (1997)

  15. Parui, S., Sarkar, R.P.: Beurling’s theorem and \( L^{p}-L^{q} \) Morgan’s theorem for step two nilpotent Lie groups. Publ. Res. Inst. Math. Sci. 44(4), 1027–1056 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sarkar, R.P., Sengupta, J.: Beurling’s theorem for Riemannian symmetric spaces. II. Proc. Am. Math. Soc. 136(5), 1841–1853 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sarkar, R.P., Sengupta, J.: Beurling’s theorem for \(SL(2,{\mathbb{R} }) \). Manuscr. Math. 123(1), 25–36 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tyr, O., Daher, R.: Beurling’s theorem in the Clifford algebras. Adv. Appl. Clifford Algebras 33, 37 (2023)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Equal contributions by all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Othman Tyr.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Rosihan M. Ali.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyr, O., Daher, R. The Beurling Theorem in Space–Time Algebras. Bull. Malays. Math. Sci. Soc. 46, 176 (2023). https://doi.org/10.1007/s40840-023-01571-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40840-023-01571-6

Keywords

Mathematics Subject Classification

Navigation