Skip to main content
Log in

Heisenberg’s and Hardy’s Uncertainty Principles for Special Relativistic Space-Time Fourier Transformation

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The special relativistic (space-time) Fourier transform (SFT) in Clifford algebra \(Cl_{(3,1)}\) of space-time, first introduced from a mathematical point of view in Hitzer (Adv Appl Clifford Algebras 17:497–517, 2007), extends the quaternionic Fourier transform to functions, fields and signals in space-time. The purpose of this paper is to advance the study of the SFT and investigate important properties such as continuity, Plancherel identity, Riemann–Lebesgue lemma, and to establish the associated Hausdorff–Young inequality. Moreover, using the observer related space-time split several uncertainty inequalities are established, including Heisenberg’s uncertainty principle and Hardy’s theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abłamowicz, R., Fauser, B.: On the transposition anti-involution in real Clifford algebras I: the transposition map. J. Linear Multilinear Algebra 59(12), 1331–1358 (2011). See also: arXiv:1005.3554

    Article  MathSciNet  Google Scholar 

  2. Buchholz, S., Tachibana, K., Hitzer, E.: Optimal learning rates for Clifford neurons. In: de Sá J.M., Alexandre L.A., Duch W., Mandic D. (eds) Artificial Neural Networks—ICANN 2007. Lecture Notes in Computer Science, vol. 4668. Springer, Berlin, pp 864–873 (2007). https://doi.org/10.1007/978-3-540-74690-4_88

  3. Buchholz, S., Hitzer, E., Tachibana, K.: Coordinate independent update formulas for versor Clifford neurons. In: Proc. Joint 4th Int. Conf. on Soft Comp. and Intel. Sys., and 9th Int. Symp. on Adv. Intel. Sys., 17–21 Sep. 2008, Nagoya, Japan, pp. 814–819 (2008). https://doi.org/10.14864/softscis.2008.0.814.0

  4. Bülow, T.: Hypercomplex spectral signal representations for the processing and analysis of images. Ph.D. thesis, Christian-Albrechts-Universität zu Kiel (1999)

  5. Clifford, W.K.: Applications of Grassmann’s extensive algebra. Am. J. Math. Pure Appl. 1, 350–358 (1878)

    MathSciNet  MATH  Google Scholar 

  6. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  7. El Haoui, Y., Fahlaoui, S.: The uncertainty principle for the two-sided quaternion Fourier transform. Mediterr. J. Math. 14, 221 (2017). https://doi.org/10.1007/s00009-017-1024-5

    Article  MathSciNet  MATH  Google Scholar 

  8. El Haoui, Y., Fahlaoui, S.: Donoho–Stark’s uncertainty principles in real Clifford algebras. Adv. Appl. Clifford Algebras 29, 94 (2019). https://doi.org/10.1007/s00006-019-1015-7

    Article  MathSciNet  MATH  Google Scholar 

  9. El Haoui, Y., Fahlaoui, S.: Miyachi’s theorem for the quaternion Fourier transform. Circuits Syst. Signal Process. 39, 2193–2206 (2020). https://doi.org/10.1007/s00034-019-01243-6

    Article  MATH  Google Scholar 

  10. Hitzer, E.: Relativistic physics as application of geometric algebra. In: Adhav, K. (ed.) Proc. of the Int. Conf. on Relativity 2005 (ICR2005). University of Amravati, India, pp. 71–90 (2005). See also: arXiv:1306.0121

  11. Hitzer, E.: Quaternion Fourier transform on quaternion fields and generalizations. Adv. Appl. Clifford Algebras. 17, 497–517 (2007). https://doi.org/10.1007/s00006-007-0037-8. See also: arXiv:1306.1023

  12. Hitzer, E., Mawardi, B.: Clifford Fourier transform on multivector fields and uncertainty principles for dimensions \(n\) = 2(mod 4) and \(n\) = 3(mod 4). Adv. Appl. Clifford Algebras 18, 715–736 (2008). https://doi.org/10.1007/s00006-008-0098-3

    Article  MathSciNet  MATH  Google Scholar 

  13. Hitzer, E.: Directional uncertainty principle for quaternion Fourier transform. Adv. Appl. Clifford Algebras 20, 271–284 (2010). https://doi.org/10.1007/s00006-009-0175-2

    Article  MathSciNet  MATH  Google Scholar 

  14. Hitzer, E.: Creative Peace License. http://gaupdate.wordpress.com/2011/12/14/the-creative-peace-license-14-dec-2011/

  15. Hitzer, E., Helmstetter, J., Abłamowicz, R.: Square roots of \(-1\) in real Clifford algebras. In: Hitzer, E., Sangwine, S.J. (eds.) Quaternion and Clifford Fourier Transforms and Wavelets, Trends in Mathematics (TIM), vol. 27. Birkhäuser, pp. 123–153 (2013). https://doi.org/10.1007/978-3-0348-0603-9_7. See also: arXiv:1204.4576

  16. Hitzer, E.: The Clifford Fourier transform in real Clifford algebras. In: Hitzer, E., Tachibana, K. (eds.) Session on Geometric Algebra and Applications, IKM 2012, Special Issue of Clifford Analysis, Clifford Algebras and their Applications, vol. 2(3), pp. 227–240 (2013). See also: arXiv:1306.0130

  17. Hitzer, E., Sangwine, S.J. (eds.): Quaternion and Clifford Fourier transforms and wavelets, Trends in Mathematics, vol. 27. Birkhäuser, Basel (2013)

    MATH  Google Scholar 

  18. Hitzer, E., Nitta, T., Kuroe, Y.: Applications of Clifford’s Geometric Algebra, Adv. Appl. Clifford Alg., vol. 23, Online First, March 2013, pp. 377–404 (2013). https://doi.org/10.1007/s00006-013-0378-4. See also: arXiv:1305.5663

  19. Hitzer, E.: Two-sided Clifford Fourier transform with two square roots of \(-1\) in \(Cl(p, q)\). Adv. Appl. Clifford Algebras 24, 313–332 (2014). https://doi.org/10.1007/s00006-014-0441-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Hitzer, E.: General steerable two-sided Clifford Fourier transform, convolution and Mustard convolution. Adv. Appl. Clifford Algebras 27(3), 2215–2234 (2017). https://doi.org/10.1007/s00006-016-0687-5

    Article  MathSciNet  MATH  Google Scholar 

  21. Hitzer, E.: Special relativistic Fourier transformation and convolutions. Math. Methods Appl. Sci. 42, 2244–2255 (2019). https://doi.org/10.1002/mma.5502

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Jday, R.: Heisenberg’s and Hardy’s uncertainty principles in real Clifford algebras. Integr. Transforms Spec. Funct. 29(8), 663–677 (2018). https://doi.org/10.1080/10652469.2018.1483363

    Article  MathSciNet  MATH  Google Scholar 

  23. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Course of Theoretical Physics, 4th edn [1939]. Butterworth–Heinemann. ISBN 0 7506 2768 9 (2002)

  24. Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations. Publicações Matemáticas, IMPA, Rio de Janeiro (2004)

    MATH  Google Scholar 

  25. Mawardi, B., Hitzer, E.: Clifford Fourier transform and uncertainty principle for the Clifford geometric algebra \(Cl(3,0)\). Adv. Appl. Clifford Algebras 16(1), 41–61 (2006). https://doi.org/10.1007/s00006-006-0003-x

    Article  MathSciNet  MATH  Google Scholar 

  26. Murray, M.: Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge University Press, Cambridge (1991) (first published)

  27. Laville, G., Ramadanoff, I.P.: Stone–Weierstrass Theorem. See also: arXiv:math/0411090

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the referees for their insightful and valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef El Haoui.

Additional information

Communicated by Uwe Kaehler

To Mrs. El Haoui.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We request readers to pay attention to the Creative Peace License [14].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Haoui, Y., Hitzer, E. & Fahlaoui, S. Heisenberg’s and Hardy’s Uncertainty Principles for Special Relativistic Space-Time Fourier Transformation. Adv. Appl. Clifford Algebras 30, 69 (2020). https://doi.org/10.1007/s00006-020-01093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-020-01093-5

Keywords

Mathematics Subject Classification

Navigation