Skip to main content
Log in

An Actuated Computational Method for Treating Parabolic Partial Delay Integro-Differential Equations Constrained by Infinite Boundary

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

For the first time via this study, the ultimate effort is inclined to numerically solve one-dimensional parabolic partial integro-differential equations with spatial–temporal delays and infinite boundary using an efficient matrix-collocation method dependent upon the orthoexponential polynomials. The method clearly actuates a novel procedure converting the unknown differential and delay terms into their matrix expansions at the collocation points, and evaluating the integral part bounded by the half-line. The existence of the singular integral part is also validated by the orthoexponential polynomial solution. In addition to these novelties, an error bound estimation is developed via a boundary property of the orthoexponential polynomials. The resulting solutions are improved via the residual error analysis. Some numerical benchmark examples are included to indicate the accuracy and validity of the method, deploying graphical and numerical instruments. It can be noticeable to conclude that the proposed method achieves both drastic and useful approximation for highly stiff problems derived from the aforementioned equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Zadeh, K.S.: An integro-partial differential equation for modeling biofluids flow in fractured biomaterials. J. Theor. Biol. 273, 72–79 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Al-Khaled, K., Darweesh, A., Yousef, M.H.: Convergence of numerical schemes for the solution of partial integro-differential equations used in heat transfer. J. Appl. Math. Comput. 61, 657–675 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Sachs, E.W., Strauss, A.K.: Efficient solution of a partial integro-differential equation in finance. Appl. Numer. Math. 58, 1687–1703 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aslefallah, M., Shivanian, E.: Nonlinear fractional integro-differential reaction-diffusion equation via radial basis functions. Eur. Phys. J. Plus 130, 47 (2015)

    Article  Google Scholar 

  5. Appell, J., Kalitvin, A., Zabrejko, P.: Partial Integral Operators and Integro-Differential Equations. Chapman & Hall/CRC Press, London (2000)

    Book  MATH  Google Scholar 

  6. Bloom, F.: Ill-posed Problems for Integrodifferential Equations in Mechanics and Electromagnetic Theory, Studies in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, (1981)

  7. Kürkçü, Ö.K., Aslan, E., Sezer, M.: A fast numerical method for fractional partial integro-differential equations with spatial-time delays. Appl. Numer. Math. 161, 525–539 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Santra, S., Mohapatra, J.: A novel finite difference technique with error estimate for time fractional partial integro-differential equation of Volterra type. J. Comput. Appl. Math. 400, 113746 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Avazzadeh, Z., Rizi, B., Ghaini, M.M., Loghmani, G.B.: A numerical solution of nonlinear parabolic-type Volterra partial integro-differential equations using radial basis functions. Eng. Anal. Bound. Elem. 36, 881–893 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Al-Smadi, M., Arqub, O.A.: Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates. Appl. Math. Comput. 342, 280–294 (2019)

    MathSciNet  MATH  Google Scholar 

  11. El-Baghdady, G.I., El-Azab, M.S.: Numerical solution for class of one dimensional parabolic partial integro-differential equations via Legendre spectral-collocation method. J. Fract. Calc. Appl. 5(3S), 1–11

  12. Fakhar-Izadi, F., Dehghan, M.: The spectral methods for parabolic Volterra integro-differential equations. J. Comput. Appl. Math. 235, 4032–4046 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rostami, Y., Maleknejad, K.: Numerical solution of partial integro-differential equations by using projection method. Mediterr. J. Math. 14, 113 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yalçın, E., Kürkçü, Ö.K., Sezer, M.: A matched Hermite-Taylor matrix method to solve the combined partial integro-differential equations having nonlinearity and delay terms. Comput. Appl. Math. 39, 1–16 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yalçın, E., Sezer, M.: A compatible Hermite-Taylor matrix-collocation technique with convergence test for second-order partial integro-differential equations containing two independent variables with functional bounds. Math. Sci. (2021). https://doi.org/10.1007/s40096-021-00393-6

  16. Dehestani, H., Ordokhani, Y.: An efficient approach based on Legendre-Gauss-Lobatto quadrature and discrete shifted Hahn polynomials for solving Caputo-Fabrizio fractional Volterra partial integro-differential equations. J. Comput. Appl. Math. 403, 113851 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ranjbar, M., Adibi, H., Lakestani, M.: Numerical solution of homogeneous Smoluchowski’s coagulation equation. Int. J. Comput. Math. 87, 2113–2122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Friedlander, S.K.: Smoke, Dust and Haze: Fundamentals of Aerosol Dynamics. Wiley, New York (1977)

    Google Scholar 

  19. Silk, J., White, S.D.: The development of structure in the expanding universe. Astrophys. J. 223, L59–L62 (1978)

    Article  Google Scholar 

  20. Niwa, H.S.: School size statistics of fish. J. Theor. Biol. 195, 351–361 (1998)

    Article  Google Scholar 

  21. Kiorbe, T.: Formation and fate of marine snow, small-scale processes with large-scale implications. Sci. Mar. 66, 67–71 (2001)

    Google Scholar 

  22. Ziff, R.M.: Kinetics of polymerization. J. Stat. Phys. 23, 241–263 (1980)

    Article  MathSciNet  Google Scholar 

  23. Smoluchowski, M.: Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen (in German). Phys. Z. 17(557–571), 585–599 (1916)

    Google Scholar 

  24. Biazar, J., Ayati, Z., Yaghouti, M.R.: Homotopy perturbation method for homogeneous Smoluchowsk’s equation. Numer. Methods Partial Differ. Equ. 26, 1146–1153 (2010)

    Article  MATH  Google Scholar 

  25. Krivitsky, D.S.: Numerical solution of the Smoluchowski kinetic equation and asymptotics of the distribution function. J. Phys. A 28, 2025–2039 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Erasmus, L.D., Eyre, D., Everson, R.C.: Numerical treatment of the population balance equation using a spline-Galerkin method. Comput. Chem. Eng. 18, 775–783 (1994)

    Article  Google Scholar 

  27. Babovsky, H.: On a Monte Carlo scheme for Smoluchowski’s coagulation equation. Monte Carlo Methods Appl. 5, 1–18 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yüzbaşı, Ş, Sezer, M.: An exponential approximation for solutions of generalized pantograph-delay differential equations. Appl. Math. Model. 37, 9160–9173 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tatari, M., Haghighi, M.: A generalized Laguerre-Legendre spectral collocation method for solving initial-boundary value problems Appl. Math. Model. 38, 1351–1364 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kürkçü, Ö.K., Sezer, M.: A directly convergent numerical method based on orthoexponential polynomials for solving integro-differential-delay equations with variable coefficients and infinite boundary on half-line. J. Comput. Appl. Math. 386, 113250 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kürkçü, Ö.K., Aslan, E., Sezer, M.: An inventive numerical method for solving the most general form of integro-differential equations with functional delays and characteristic behavior of orthoexponential residual function. Comput. Appl. Math. 38, 34 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gümgüm, S., Savaşaneril, N.B., Kürkçü, Ö.K., Sezer, M.: Lucas polynomial solution for neutral differential equations with proportional delays. TWMS J. Appl. Eng. Math. 10, 259–269 (2020)

    MATH  Google Scholar 

  33. Sazmand, A., Behroozifar, M.: Application Jacobi spectral method for solving the time-fractional differential equation. J. Comput. Appl. Math. 339, 49–68 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Baykus, N., Sezer, M.: Solution of high-order linear Fredholm integro-differential equations with piecewise intervals. Numer. Methods Partial Differ. Equ. 27, 1327–1339 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhao, J., Cao, Y., Xu, Y.: Legendre spectral collocation methods for Volterra delay-integro-differential equations. J. Sci. Comput. 67, 1110–1133 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jaroch, O.: Approximation by exponential functions. Aplikace Matematiky 7(4), 249–264 (1962). ((in Czech))

    MathSciNet  MATH  Google Scholar 

  37. Tuttle, D.F.: Network synthesis for prescribed transient response, Massachusetts Institute of Technology, DSc. Thesis, (1949)

  38. Laning, J.H., Battin, R.H.: Random Processes in Automatic Control. McGraw-Hill, New York (1956)

    Google Scholar 

  39. Dmitriyev, A.A.: Orthogonal exponential functions in hydrometeorology. Gidrometeoizdat, Leningrad (1973). (in Russian)

  40. Chelyshkov, V.S., Liu, C.: Direct numerical simulation of fully developed flow near a flat plate, In: Proceedings of the Third AFOSR International Conferenceon DNS/LES, Texas, pp. 533–540 (2001)

  41. Grinchenko, V.T., Chelyshkov, V.S.: Direct numerical simulation of boundary layer transition. In: So, R.M.C., Speziale, C.G., Launder, B.E. (eds.) Near-Wall Turbulent Flows, pp. 889–897. Elsevier Science Publishers, BV (1993)

    Google Scholar 

  42. Jaroch, O.: Orthoexponential polynomials and the Legendre polynomials. Aplikace Matematiky 23(6), 467–471 (1978)

    MathSciNet  MATH  Google Scholar 

  43. Jaroch, O., Novotny, J.: Recurrence relations for orthogonal exponential polynomials and their derivatives. Acta Polytechnica-Prace CVUT 4, 39–42 (1973) (in Czech)

  44. Dehghan, M., Lakestani, M.: The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation. Numer. Methods Partial Differ. Equ. 25, 931–938 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Nat. Bureau of Standards. Appl. Math. Ser. 55, (1964)

Download references

Acknowledgements

The author would like to thank anonymous reviewers for their constructive and valuable comments, which led to the improvement of the paper.

Author information

Authors and Affiliations

Authors

Contributions

Ö. K. Kürkçü wrote the manuscript text and performed all computations.

Corresponding author

Correspondence to Ömür Kıvanç Kürkçü.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kürkçü, Ö.K. An Actuated Computational Method for Treating Parabolic Partial Delay Integro-Differential Equations Constrained by Infinite Boundary. Mediterr. J. Math. 20, 285 (2023). https://doi.org/10.1007/s00009-023-02492-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-023-02492-1

Keywords

Mathematics Subject Classification

Navigation