Skip to main content
Log in

Integral Solution for a Parabolic Equation Driven by the p(x)-Laplacian Operator with Nonlinear Boundary Conditions and \(L^{1}\) Data

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study the solvability of a class of parabolic equations having p(x)-growth structure and involving nonlinear boundary conditions with irregular data. We tackle our problem in a suitable functional setting by considering the so-called Lebesgue and Sobolev spaces with variable exponents. We establish two existence and uniqueness results of solutions to the studied problem. In the first one, we use a subdifferential approach to investigate the existence and uniqueness of a weak solution when the data are regular enough. Second, we assume that the data belong only to the space \(L^1\) and we show the existence and uniqueness of an integral solution to the considered model. Our main idea relies essentially on the use of accretive operator theory and involves some new techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akagi, G., Matsuura, K.: Nonlinear diffusion equations driven by the \(p(.)\)-Laplacian. Nonlinear Differ. Equ. Appl. 20, 37–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alaa, H., Alaa, N.E., Charkaoui, A.: Time periodic solutions for strongly nonlinear parabolic systems with \(p(x)\)-growth conditions. J. Ellipti Parabol. Equ. 7, 815–839 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Badii, M.: Periodic solutions for a nonlinear parabolic equation with nonlinear boundary conditions. Rend. Sem. Mat. Univ. Pol. Torino 67(3), 341–349 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Bendahmane, M., Saad, M.: Mathematical analysis and pattern formation for a partial immune system modeling the spread of an epidemic disease. Acta Appl. Math. 115, 17–42 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bendahmane, M., Wittbold, P., Zimmermann, A.: Renormalized solutions for a nonlinear parabolic equation with variable exponents and \(L^{1}\)-data. J. Differ. Equ. 249, 1483–1515 (2010)

    Article  MATH  Google Scholar 

  6. Brezis, H.: Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, Math Studies, vol. 5. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  7. Charkaoui, A., Alaa, N.E.: Existence and uniqueness of renormalized periodic solution to a nonlinear parabolic problem with variable exponent and \(L^{1}\) data. J. Math. Anal. Appl. 506, 125674 (2022)

    Article  MATH  Google Scholar 

  8. Charkaoui, A., Fahim, H., Alaa, N.E.: Nonlinear parabolic equation having nonstandard growth condition with respect to the gradient and variable exponent. Opusc. Math. 41(1), 25–53 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Charkaoui, A., Alaa, N.E.: Weak periodic solution for semilinear parabolic problem with singular nonlinearities and \(L^{1}\) data. Mediterr. J. Math. 17, 108 (2020)

    Article  MATH  Google Scholar 

  10. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chlebicka, I., Gwiazda, P., Zatorska-Goldstein, A.: Well-posedness of parabolic equations in the non reflexive and anisotropic Musielak–Orlicz spaces in the class of renormalized solutions. J. Differ. Equ. 265(11), 5716–5766 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chipot, M., Fila, M., Quittner, P.: Stationary solutions, blow up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions. Acta Math. Univ. Comen. New Ser. 60(1), 35–103 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Chu, Y., Cheng, L., Sun, J., Cheng, Y.: Existence of multiple solutions for a quasilinear elliptic system involving sign-changing weight functions and variable exponent. Mediterr. J. Math. 19(3), 112 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Deng, S.G.: Eigenvalues of the \(p(x)\)-Laplacian Steklov problem. J. Math. Anal. Appl. 339(2), 925–937 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Deng, S.G.: Positive solutions for Robin problem involving the \(p(x)\)-Laplacian. J. Math. Anal. Appl. 360, 548–560 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Diening, L., Harjulehto, P., Häströ, P., Ruzicka, M.: Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)

    Book  Google Scholar 

  17. Diening, L., Ettwein, F., Ruzicka, M.: \(C^{1,\alpha }\)-regularity for electrorheological fluids in two dimensions. Nonlinear Differ. Equ. Appl. 14, 207–217 (2007)

    Article  MATH  Google Scholar 

  18. Elaassri, A., Lamrini Uahabi, K., Charkaoui, A., Alaa, N.E., Mesbahi, S.: Existence of weak periodic solution for quasilinear parabolic problem with nonlinear boundary conditions. Ann. Univ. Craiova Math. Comput. Sci. Ser. 46(1), 1–13 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Ettwein, F., Ruzicka, M.: Existence of local strong solutions for motions of electrorheological fluids in three dimensions. Comput. Math. Appl. 53, 595–604 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fan, X., Shen, J., Zhao, D.: Sobolev embedding theorems for spaces \(W^{k, p(x)}(\Omega )\). J. Math. Anal. Appl. 262, 749–760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fan, X., Zhang, Q.: Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem. Nonlinear Anal. 52, 1843–1852 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fan, X., Zhao, D.: On the spaces \(L^{p(x)}(\Omega )\) and \(W^{m, p(x)}(\Omega )\). J. Math. Anal. Appl. 263, 424–446 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fan, X.: Boundary trace embedding theorems for variable exponent Sobolev spaces. J. Math. Anal. Appl. 339, 1395–1412 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fragnelli, G.: Positive periodic solutions for a system of anisotropic parabolic equations. J. Math. Anal. Appl. 367, 204–228 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gao, W., Guo, B.: Existence and localization of weak solutions of nonlinear parabolic equations with variable exponent of nonlinearity. Ann. Mat. 191, 551–562 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kovác̆ik, O., Rákosník, J.: On spaces \(L^{p(x)}(\Omega )\) and \(W^{1,p(x)}(\Omega )\). Czechoslovak Math. J. 41, 592–618 (1991)

  27. Luskin, M.: A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions. SIAM J. Numer. Anal. 16(2), 284–299 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mihăilescu, M., Rădulescu, V.: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. A 462(2073), 2625–2641 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rădulescu, V., Repovs̆, D.D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis. CRC Press, Boca Raton (2015)

  30. Rajagopal, K.: Mathematical modelling of electrorheological fluids. Contin. Mech. Thermodyn. 13, 59–78 (2001)

    Article  MATH  Google Scholar 

  31. Rasouli, S.H.: On a PDE involving the variable exponent operator with nonlinear boundary conditions. Mediterr. J. Math. 12, 821–837 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rockafeller, R.T.: Characterization of the subdifferentials of convex functions. Pac. J. Math. 17, 497–510 (1966)

    Article  MathSciNet  Google Scholar 

  33. Roubicek, T.: Nonlinear heat equation with \(L^{1}\)-data. Nonlinear Differ. Equ. Appl. 5, 517–527 (1998)

    Article  MATH  Google Scholar 

  34. Ruzicka, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  35. Warma, M.: Quasilinear parabolic equations with nonlinear Wentzell–Robin type boundary conditions. J. Math. Anal. Appl. 336(2), 1132–1148 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, C., Zhou, S.: Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and \(L^{1}\) data. J. Differ. Equ. 248, 1376–1400 (2010)

    Article  MATH  Google Scholar 

  37. Zeidler, E.: Nonlinear Functional Analysis and Its Applications, III. Variational Methods and Optimization. Springer, New York (1985–1990)

  38. Zhikov, V.V.: Averaging of functionals in the calculus of variations and elasticity. Math. USSR Izv. 29, 33–66 (1987)

    Article  MATH  Google Scholar 

  39. Zhikov, V.V.: On the density of smooth functions in Sobolev–Orlicz spaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov POMI 310, 67–81 (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors have made substantial contributions to all final approval of the version to be submitted and each of the authors has read and concurs with the content in the manuscript.

Corresponding author

Correspondence to Abderrahim Charkaoui.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaa, N.E., Charkaoui, A., El Ghabi, M. et al. Integral Solution for a Parabolic Equation Driven by the p(x)-Laplacian Operator with Nonlinear Boundary Conditions and \(L^{1}\) Data. Mediterr. J. Math. 20, 244 (2023). https://doi.org/10.1007/s00009-023-02446-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-023-02446-7

Keywords

Mathematics Subject Classification

Navigation