1 Introduction

D denotes the domain

D:={0<x<1,0<t<T}.

Consider the equation

u t 2 u x 2 ε 3 u x 2 t =f(x,t,u),
(1)

with the initial condition

u(x,0)=φ(x),x[0,1],
(2)

the nonlocal boundary condition

u(0,t)=u(1,t),t[0,T],
(3)
u x (1,t)=0,t[0,T],
(4)

for a quasilinear pseudo-parabolic equation with the nonlinear source term f=f(x,t,u).

The functions φ(x) and f(x,t,u) are given functions on [0,1] and D ¯ ×(,), respectively. ε[0, ε 0 ] is a small parameter, ε 0 0.

Denote the solution of problem (1)-(4) by u=u(x,t,ε).

This problem was investigated with different boundary conditions by various researchers by using Fourier methods [1].

In this study, we consider the initial-boundary value problem (1)-(4) with nonlocal boundary conditions (2)-(3). The periodic nature of (2)-(3) type boundary conditions is demonstrated in [2]. In this study, we prove the existence, uniqueness convergence of the weak generalized solution, continuous dependent upon the data of the solution; and we construct an iteration algorithm for the numerical solution of this problem. We analyze computationally convergence of the iteration algorithm, as well as treating a test example.

We will use the weak solution approach from [3] for the considered problem (1)-(4).

According to [4, 5] we assume the following definitions.

Definition 1 The function v(x,t) C 2 ( D ¯ ) is called test function if it satisfies the following conditions:

v(x,T)=0,v(0,t)=v(1,t), v x (1,t)=0,t[0,T] and x[0,1].

Definition 2 The function u(x,t,ε)C( D ¯ ) satisfying the integral identity

0 T 0 1 [ ( v t + 2 v x 2 ε 3 v x 2 t ) u + f ( x , t , u ) v ] d x d t + 0 1 φ ( x ) [ v ( x , 0 ) ε 3 v ( x , 0 ) x 2 ] d x = 0 ,
(5)

for arbitrary test function v=v(x,t), is called a generalized (weak) solution of problem (1)-(4).

2 Reducing the problem to countable system of integral equations

Consider the following system of functions on the interval [0,1]:

X 0 ( x ) = 2 , X 2 k 1 ( x ) = 4 cos ( 2 π k x ) , X 2 k ( x ) = 4 ( 1 x ) sin ( 2 π k x ) , k = 1 , 2 , ,
(6)
Y 0 (x)=x, Y 2 k 1 (x)=xcos(2πkx), Y 2 k (x)=sin(2πkx),k=1,2,.
(7)

The system of functions (6) and (7) arise in [6] for the solution of a nonlocal boundary value problem in heat conduction.

It is easy to verify that the systems of function (6) and (7) are biorthonormal on [0,1]. They are also Riesz bases in L 2 [0,1] (see [7, 8]).

We will use the Fourier series representation of the weak solution to transform the initial-boundary value problem to the infinite set of nonlinear integral equations.

Any solution of (1)-(4) can be represented as

u(x,t,ε)= k = 1 u k (t,ε) X k (x),
(8)

where the functions u k (t,ε), k=0,1,2, , satisfy the following system of equations:

u 0 ( t , ε ) = φ 0 + 0 t f 0 ( τ ) d τ , u 2 k ( t , ε ) = φ 2 k e ( 2 π k ) 2 t 1 + ε ( 2 π k ) 2 + 1 1 + ε ( 2 π k ) 2 0 t f 2 k ( τ ) e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 d τ , u 2 k 1 ( t , ε ) = ( φ 2 k 1 φ 2 k + ( 2 π k ) 2 1 + ε ( 2 π k ) 2 φ 2 k ) e ( 2 π k ) 2 t 1 + ε ( 2 π k ) 2 u 2 k 1 ( t , ε ) = + 1 1 + ε ( 2 π k ) 2 0 t [ f 2 k 1 ( τ ) ( 1 ( 2 π k ) 2 1 + ε ( 2 π k ) 2 ) ( t τ ) f 2 k ( τ ) ] u 2 k 1 ( t , ε ) = e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 d τ ,
(9)

where

φ k = 0 1 φ ( x ) Y k ( x ) d x , f k ( x ) = 0 1 f ( x , t , u ) Y k ( x ) d x .

Definition 3 Denote the set

{ u ( t , ε ) } = { u 0 ( t , ε ) , u 2 k ( t , ε ) , u 2 k 1 ( t , ε ) , k = 1 , 2 , } ,

of functions continuous on [0,T] satisfying the condition

max 0 t T | u 0 (t,ε)|+ k = 1 ( max 0 t T | u 2 k ( t , ε ) | + max 0 t T | u 2 k 1 ( t , ε ) | ) <,

by B. Let

u ( t , ε ) = max 0 t T | u 0 (t,ε)|+ k = 1 ( max 0 t T | u 2 k ( t , ε ) | + max 0 t T | u 2 k 1 ( t , ε ) | )

be the norm in B. It can be shown that B is a Banach space [9].

We denote the solution of the nonlinear system (9) by {u(t,ε)}.

Theorem 4

  1. (1)

    Assume the function f(x,t,u) is continuous with respect to all arguments in D ¯ ×(,) and satisfies the following condition:

    |f(t,x,u)f(t,x, u ˜ )|b(t,x)|u u ˜ |,

where b(x,t) L 2 (D), b(x,t)0,

  1. (2)

    f(x,t,0) C 2 [0,1], t[0,1],

  2. (3)

    φ(x) C 2 [0,1].

Then the system (9) has a unique solution in D.

Proof For N=0,1, , let us define an iteration for the system (9) as follows:

u 0 ( N + 1 ) ( t , ε ) = u 0 ( 0 ) ( t , ε ) + 0 t 0 1 f ( ξ , τ , ( 2 u 0 ( N ) ( τ , ε ) + 4 k = 1 ( u 2 k ( N ) ( τ , ε ) ( 1 ξ ) sin 2 π k ξ + u 2 k 1 ( N ) ( τ , ε ) cos 2 π k ξ ) ) ) ξ d ξ d τ , u 2 k ( N + 1 ) ( t , ε ) = u 2 k ( 0 ) ( t , ε ) + 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f ( ξ , τ , ( 2 u 0 ( N ) ( τ , ε ) + 4 k = 1 ( u 2 k ( N ) ( τ , ε ) ( 1 ξ ) sin 2 π k ξ + u 2 k 1 ( N ) ( τ , ε ) cos 2 π k ξ ) ) ) sin 2 π k ξ d ξ d τ , u 2 k 1 ( N + 1 ) ( t , ε ) = u 2 k 1 ( 0 ) ( t , ε ) + 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f ( ξ , τ , ( 2 u 0 ( N ) ( τ , ε ) + 4 k = 1 ( u 2 k ( N ) ( τ , ε ) ( 1 ξ ) sin 2 π k ξ + u 2 k 1 ( N ) ( τ , ε ) cos 2 π k ξ ) ) ) ξ cos 2 π k ξ d ξ d τ + 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f ( ξ , τ , ( 2 u 0 ( N ) ( τ ) + 4 k = 1 ( u 2 k ( N ) ( τ ) ( 1 ξ ) sin 2 π k ξ + u 2 k 1 ( N ) ( τ ) cos 2 π k ξ ) ) ) ( t τ ) sin 2 π k ξ d ξ d τ 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 ( 2 π k ) 2 1 + ε ( 2 π k ) 2 f ( ξ , τ , ( 2 u 0 ( N ) ( τ , ε ) + 4 k = 1 ( u 2 k ( N ) ( τ , ε ) ( 1 ξ ) sin 2 π k ξ + u 2 k 1 ( N ) ( τ , ε ) cos 2 π k ξ ) ) ) ( t τ ) sin 2 π k ξ d ξ d τ ,
(10)

where, for simplicity, we let

A u ( N ) ( ξ , τ , ε ) = 2 u 0 ( N ) ( τ , ε ) + 4 k = 1 ( u 2 k ( N ) ( τ , ε ) ( 1 ξ ) sin 2 π k ξ + u 2 k 1 ( N ) ( τ , ε ) cos 2 π k ξ ) , u 0 ( N + 1 ) ( t , ε ) = u 0 ( 0 ) ( t , ε ) + 0 t 0 1 f ( ξ , τ , A u ( N ) ( ξ , τ , ε ) ) ξ d ξ d τ , u 2 k ( N + 1 ) ( t , ε ) = u 2 k ( 0 ) ( t , ε ) + 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f ( ξ , τ , A u ( N ) ( ξ , τ , ε ) ) sin 2 π k ξ d ξ d τ , u 2 k 1 ( N + 1 ) ( t , ε ) = u 2 k 1 ( 0 ) ( t , ε ) + 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f ( ξ , τ , A u ( N ) ( ξ , τ , ε ) ) ξ cos 2 π k ξ d ξ d τ + 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f ( ξ , τ , A u ( N ) ( ξ , τ , ε ) ) ( t τ ) sin 2 π k ξ d ξ d τ 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 ( 2 π k ) 2 1 + ε ( 2 π k ) 2 f ( ξ , τ , A u ( N ) ( ξ , τ , ε ) ) ( t τ ) sin 2 π k ξ d ξ d τ ,
(11)

where u 0 ( 0 ) (t,ε)= φ 0 , u 2 k ( 0 ) (t,ε)= φ 2 k e ( 2 π k ) 2 t 1 + ε ( 2 π k ) 2 , u 2 k 1 ( 0 ) (t,ε)=( φ 2 k 1 φ 2 k + ( 2 π k ) 2 1 + ε ( 2 π k ) 2 φ 2 k ) e ( 2 π k ) 2 t 1 + ε ( 2 π k ) 2 .

From the condition of the theorem we have u ( 0 ) (t,ε)B. We will prove that the other sequential approximations satisfy this condition.

Let us write N=0 in (11).

u 0 ( 1 ) (t,ε)= u 0 ( 0 ) (t,ε)+ 0 t 0 1 f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) dξdτ.

Adding and subtracting 0 t 0 1 f(ξ,τ,0)dξdτ to both sides of the last equation, we obtain

u 0 ( 1 ) ( t , ε ) = u 0 ( 0 ) ( t , ε ) + 0 t 0 1 [ f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) f ( ξ , τ , 0 ) ] d ξ d τ + 0 t 0 1 f ( ξ , τ , 0 ) d ξ d τ .

Applying the Cauchy Inequality to the last equation, we have

| u 0 ( 1 ) ( t , ε ) | | φ 0 | + ( 0 t d τ ) 1 2 ( 0 t { 0 1 [ f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) f ( ξ , τ , 0 ) ] d ξ } 2 d τ ) 1 2 + ( 0 t d τ ) 1 2 ( 0 t { 0 1 f ( ξ , τ , 0 ) d ξ } 2 d τ ) 1 2 .

Applying the Lipschitzs Condition to the last equation, we have

| u 0 ( 1 ) ( t , ε ) | | φ 0 | + t ( 0 t { 0 1 b ( ξ , τ ) | A u ( 0 ) ( ξ , τ , ε ) | d ξ } 2 d τ ) 1 2 + t ( 0 t { 0 1 f ( ξ , τ , 0 ) d ξ } 2 d τ ) 1 2 .

Let us use

|A u ( 0 ) (ξ,τ)|| u ( 0 ) (τ,ε)|.

Taking the maximum of both sides of the last inequality yields the following:

max 0 t T | u 0 ( 1 ) ( t , ε ) | | φ 0 | + T b ( x , t ) L 2 ( D ) u ( 0 ) ( t , ε ) + T f ( x , t , 0 ) L 2 ( D ) , u 2 k ( 1 ) ( t , ε ) = φ 2 k e ( 2 π k ) 2 t 1 + ε ( 2 π k ) 2 + 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) sin 2 π k ξ d ξ d τ .

Adding and subtracting 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f(ξ,τ,0)sin2πkξdξdτ to both sides of the last equation, we obtain

u 2 k ( 1 ) ( t , ε ) = φ 2 k e ( 2 π k ) 2 t 1 + ε ( 2 π k ) 2 + 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 [ f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) f ( ξ , τ , 0 ) ] sin 2 π k ξ d ξ d τ + 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f ( ξ , τ , 0 ) sin 2 π k ξ d ξ d τ .

Applying the Cauchy Inequality to the last equation, we have

| u 2 k ( 1 ) ( t , ε ) | | φ 2 k | + ( 0 t e 2 ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 d τ ) 1 2 ( 0 t { 1 1 + ε ( 2 π k ) 2 0 1 [ f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) f ( ξ , τ , 0 ) ] sin 2 π k ξ d ξ } 2 d τ ) 1 2 + ( 0 t e 2 ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 d τ ) 1 2 ( 0 t { 1 1 + ε ( 2 π k ) 2 0 1 f ( ξ , τ , 0 ) sin 2 π k ξ d ξ } 2 d τ ) 1 2 .

Taking the summation of both sides with respect to k and using the Hölder Inequality yield the following:

k = 1 | u 2 k ( 1 ) ( t , ε ) | k = 1 | φ 2 k | + 1 2 2 π ( k = 1 1 k 2 ( 1 + ε ( 2 π k ) 2 ) 2 ) 1 2 ( 0 t k = 1 { 0 1 [ f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) f ( ξ , τ , 0 ) ] sin 2 π k ξ d ξ } 2 d τ ) 1 2 + 1 2 2 π ( k = 1 1 k 2 ( 1 + ε ( 2 π k ) 2 ) 2 ) 1 2 ( 0 t k = 1 { 0 1 f ( ξ , τ , 0 ) sin 2 π k ξ d ξ } 2 d τ ) 1 2 .

Using the Bessel Inequality in the last inequality, we obtain

k = 1 | u 2 k ( 1 ) ( t , ε ) | k = 1 | φ 2 k | + 1 4 3 ( 0 t k = 1 { 0 1 [ f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) f ( ξ , τ , 0 ) ] sin 2 π k ξ d ξ } 2 d τ ) 1 2 + 1 4 3 ( 0 t k = 1 { 0 1 f ( ξ , τ , 0 ) sin 2 π k ξ d ξ } 2 d τ ) 1 2 .

Applying the Lipschitzs Condition to the last equation and taking the maximum of both sides of the last inequality yield the following:

k = 1 max 0 t T | u 2 k ( 1 ) ( t , ε ) | k = 1 | φ 2 k | + 1 4 3 b ( x , t ) L 2 ( D ) u ( 0 ) ( t , ε ) B + 1 4 3 f ( x , t , 0 ) L 2 ( D ) , u 2 k 1 ( 1 ) ( t , ε ) = ( φ 2 k 1 φ 2 k + ( 2 π k ) 2 1 + ε ( 2 π k ) 2 φ 2 k ) e ( 2 π k ) 2 t 1 + ε ( 2 π k ) 2 + 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) ξ cos 2 π k ξ d ξ d τ + 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) ( t τ ) sin 2 π k ξ d ξ d τ 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 ( 2 π k ) 2 1 + ε ( 2 π k ) 2 f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) ( t τ ) sin 2 π k ξ d ξ d τ .

Adding and subtracting

1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f ( ξ , τ , 0 ) ξ cos 2 π k ξ d ξ d τ , 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f ( ξ , τ , 0 ) ( t τ ) sin 2 π k ξ d ξ d τ , 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 ( 2 π k ) 2 1 + ε ( 2 π k ) 2 f ( ξ , τ , 0 ) ( t τ ) sin 2 π k ξ d ξ d τ

to both sides of the last equation and applying the derivative to φ 2 k , we obtain

u 2 k 1 ( 1 ) ( t , ε ) = ( φ 2 k 1 + 1 4 π 2 k 2 φ 2 k ′′ + ( 2 π k ) 2 1 + ε ( 2 π k ) 2 φ 2 k ′′ ) e ( 2 π k ) 2 t 1 + ε ( 2 π k ) 2 + 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 [ f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) f ( ξ , τ , 0 ) ] ξ cos 2 π k ξ d ξ d τ + 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f ( ξ , τ , 0 ) ξ cos 2 π k ξ d ξ d τ + 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 [ f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) f ( ξ , τ , 0 ) ] ( t τ ) sin 2 π k ξ d ξ d τ + 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f ( ξ , τ , 0 ) ( t τ ) sin 2 π k ξ d ξ d τ 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 ( 2 π k ) 2 1 + ε ( 2 π k ) 2 [ f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) f ( ξ , τ , 0 ) ] ( t τ ) sin 2 π k ξ d ξ d τ + 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 ( 2 π k ) 2 1 + ε ( 2 π k ) 2 f ( ξ , τ , 0 ) ( t τ ) sin 2 π k ξ d ξ d τ .

Applying the Cauchy Inequality to the last equation, we have the following:

| u 2 k 1 ( 1 ) ( t , ε ) | | φ 2 k 1 | + 1 4 π 2 k 2 | φ 2 k ′′ | + 1 1 + ε ( 2 π k ) 2 | φ 2 k ′′ | + ( 0 t e 2 ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 d τ ) 1 2 ( 0 t { 1 1 + ε ( 2 π k ) 2 0 1 [ f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) f ( ξ , τ , 0 ) ] ξ cos 2 π k ξ d ξ } 2 d τ ) 1 2 + ( 0 t e 2 ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 d τ ) 1 2 ( 0 t { 0 1 f ( ξ , τ , 0 ) ξ cos 2 π k ξ d ξ } 2 d τ ) 1 2 + ( 0 t e 2 ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 d τ ) 1 2 ( 0 t { 1 1 + ε ( 2 π k ) 2 0 1 [ f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) f ( ξ , τ , 0 ) ] ( t τ ) sin 2 π k ξ d ξ } 2 d τ ) 1 2 + ( 0 t e 2 ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 d τ ) 1 2 ( 0 t { 1 1 + ε ( 2 π k ) 2 0 1 f ( ξ , τ , 0 ) ( t τ ) sin 2 π k ξ d ξ } 2 d τ ) 1 2 + ( 0 t e 2 ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 d τ ) 1 2 0 t { 1 1 + ε ( 2 π k ) 2 0 1 ( 2 π k ) 2 1 + ε ( 2 π k ) 2 [ f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) f ( ξ , τ , 0 ) ] ( t τ ) sin 2 π k ξ d ξ } 2 d τ 1 2 + ( 0 t e 2 ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 d τ ) 1 2 ( 0 t { 1 1 + ε ( 2 π k ) 2 0 1 ( 2 π k ) 2 1 + ε ( 2 π k ) 2 f ( ξ , τ , 0 ) ( t τ ) sin 2 π k ξ d ξ } 2 d τ ) 1 2 .

Taking the summation of both sides with respect to k and using the Hölder, Bessel, and Lipschitzs Inequalities yields the following:

k = 1 | u 2 k 1 ( 1 ) ( t , ε ) | k = 1 | φ 2 k 1 | + ( 1 4 6 π + π 6 ) k = 1 | φ 2 k ′′ | + 1 4 3 ( 0 t 0 1 b 2 ( ξ , τ ) | u ( 0 ) ( τ , ε ) | 2 d ξ d τ ) 1 2 + 1 4 3 ( 0 t 0 1 f 2 ( ξ , τ , 0 ) d ξ d τ ) 1 2 + | t | 4 3 ( 0 t 0 1 b 2 ( ξ , τ ) | u ( 0 ) ( τ , ε ) | 2 d ξ d τ ) 1 2 + | t | 4 3 ( 0 t 0 1 f 2 ( ξ , τ , 0 ) d ξ d τ ) 1 2 + | t | π 3 ( 0 t 0 1 b 2 ( ξ , τ ) | u ( 0 ) ( τ , ε ) | 2 d ξ d τ ) 1 2 + | t | π 2 3 ( 0 t 0 1 f 2 ( ξ , τ , 0 ) d ξ d τ ) 1 2 .

Taking the maximum of both sides of the last inequality yields the following:

k = 1 max 0 t T | u 2 k 1 ( 1 ) ( t , ε ) | k = 1 | φ 2 k 1 | + ( 1 + 4 π 2 4 6 ) k = 1 | φ 2 k ′′ | + 1 4 3 b ( x , t ) L 2 ( D ) u ( 0 ) ( t , ε ) B + 1 4 3 f ( x , t , 0 ) L 2 ( D ) + | T | 4 3 b ( x , t ) L 2 ( D ) u ( 0 ) ( t , ε ) B + | T | 4 3 f ( x , t , 0 ) L 2 ( D ) + | T | π 2 3 b ( x , t ) L 2 ( D ) u ( 0 ) ( t , ε ) B + | T | π 2 3 f ( x , t , 0 ) L 2 ( D ) .

Finally we have the following inequality:

u ( 1 ) ( t , ε ) B = 2 max 0 t T | u 0 ( 1 ) ( t , ε ) | + 4 k = 1 ( max 0 t T | u 2 k ( 1 ) ( t , ε ) | + max 0 t T | u 2 k 1 ( 1 ) ( t , ε ) | ) 2 | φ 0 | + 4 k = 1 ( | φ 2 k | + | φ 2 k 1 | ) + ( 1 + 4 π 2 6 ) k = 1 | φ 2 k ′′ | + ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) ( b ( x , t ) L 2 ( D ) u ( 0 ) ( t , ε ) B ) + ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) f ( x , t , 0 ) L 2 ( D ) .

Hence u ( 1 ) (t,ε)B. In the same way, for a general value of N we have

u ( N ) ( t , ε ) B = 2 max 0 t T | u 0 ( N ) ( t , ε ) | + 4 k = 1 ( max 0 t T | u 2 k ( N ) ( t , ε ) | + max 0 t T | u 2 k 1 ( N ) ( t , ε ) | ) 2 | φ 0 | + 4 k = 1 ( | φ 2 k | + | φ 2 k 1 | ) + ( 1 + 4 π 2 6 ) k = 1 | φ 2 k ′′ | + ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) ( b ( x , t ) L 2 ( D ) u ( N 1 ) ( t , ε ) B ) + ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) f ( x , t , 0 ) L 2 ( D ) ,

considering the induction hypothesis that u ( N 1 ) (t,ε)B, we deduce that u ( N ) (t,ε)B, and by the principle of mathematical induction we obtain

{ u ( t , ε ) } = { u 0 ( t , ε ) , u 2 k ( t , ε ) , u 2 k 1 ( t , ε ) , k = 1 , 2 , } B.

Now we prove that the iterations u ( N + 1 ) (t,ε) converge in B, as N. We have

u ( 1 ) ( t , ε ) u ( 0 ) ( t , ε ) = 2 ( u 0 ( 1 ) ( t , ε ) u 0 ( 0 ) ( t , ε ) ) + 4 k = 1 [ ( u 2 k ( 1 ) ( t , ε ) u 2 k ( 0 ) ( t , ε ) ) + ( u 2 k 1 ( 1 ) ( t , ε ) u 2 k 1 ( 0 ) ( t , ε ) ) ] = 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) ξ d ξ d τ + 4 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) ξ cos 2 π k ξ d ξ d τ + 4 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) ( t τ ) sin 2 π k ξ d ξ d τ 4 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 ( 2 π k ) 2 1 + ε ( 2 π k ) 2 f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) ( t τ ) sin 2 π k ξ d ξ d τ .

Applying the Cauchy Inequality, the Hölder Inequality, the Lipschitzs Condition, and the Bessel Inequality to the right side of (11), respectively, we obtain

| u ( 1 ) ( t , ε ) u ( 0 ) ( t , ε ) | 2 | u 0 ( 1 ) ( t , ε ) u 0 ( 0 ) ( t , ε ) | + 4 k = 1 ( | u 2 k ( 1 ) ( t , ε ) u 2 k ( 0 ) ( t , ε ) | + | u 2 k 1 ( 1 ) ( t , ε ) u 2 k 1 ( 0 ) ( t , ε ) | ) ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) ( 0 t 0 1 b 2 ( ξ , τ ) d ξ d τ ) 1 2 | u ( 0 ) ( t , ε ) | + ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) ( 0 t 0 1 f 2 ( ξ , τ , 0 ) d ξ d τ ) 1 2 .

Let

A T = [ ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) ( 0 t 0 1 b 2 ( ξ , τ ) d ξ d τ ) 1 2 | u ( 0 ) ( t , ε ) | + ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) ( 0 t 0 1 f 2 ( ξ , τ , 0 ) d ξ d τ ) 1 2 ] , u ( 2 ) ( t , ε ) u ( 1 ) ( t , ε ) = 2 ( u 0 ( 2 ) ( t , ε ) u 0 ( 1 ) ( t , ε ) ) + 4 k = 1 [ ( u 2 k ( 2 ) ( t , ε ) u 2 k ( 1 ) ( t , ε ) ) + ( u 2 k 1 ( 2 ) ( t , ε ) u 2 k 1 ( 1 ) ( t , ε ) ) ] .

Applying the Cauchy Inequality, the Hölder Inequality, the Lipschitzs Condition, and the Bessel Inequality to the right hand side of (9), respectively, we obtain

| u ( 2 ) ( t , ε ) u ( 1 ) ( t , ε ) | 2 | u 0 ( 2 ) ( t , ε ) u 0 ( 1 ) ( t , ε ) | + 4 k = 1 ( | u 2 k ( 2 ) ( t , ε ) u 2 k ( 1 ) ( t , ε ) | + | u 2 k 1 ( 2 ) ( t , ε ) u 2 k 1 ( 1 ) ( t , ε ) | ) ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) ( 0 t 0 1 b 2 ( ξ , τ ) d ξ d τ ) 1 2 A T , u ( 3 ) ( t , ε ) u ( 2 ) ( t , ε ) = 2 ( u 0 ( 3 ) ( t , ε ) u 0 ( 2 ) ( t , ε ) ) + 4 k = 1 [ ( u 2 k ( 3 ) ( t , ε ) u 2 k ( 2 ) ( t , ε ) ) + ( u 2 k 1 ( 3 ) ( t , ε ) u 2 k 1 ( 2 ) ( t , ε ) ) ] .

Applying the Cauchy Inequality, the Hölder Inequality, the Lipschitzs Condition, and the Bessel Inequality to the right hand side of (9), respectively, we obtain

| u ( 3 ) ( t , ε ) u ( 2 ) ( t , ε ) | 2 | u 0 ( 3 ) ( t , ε ) u 0 ( 2 ) ( t , ε ) | + 4 k = 1 ( | u 2 k ( 3 ) ( t , ε ) u 2 k ( 2 ) ( t , ε ) | + | u 2 k 1 ( 3 ) ( t , ε ) u 2 k 1 ( 2 ) ( t , ε ) | ) ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 3 ) ( 0 t 0 1 b 2 ( ξ , τ ) | u ( 2 ) ( t , ε ) u ( 1 ) ( t , ε ) | 2 d ξ d τ ) 1 2 ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 3 ) 2 A T [ 0 t 0 1 b 2 ( ξ , τ ) ( 0 τ 0 1 b 2 ( ξ 1 , τ 1 ) d ξ 1 d τ 1 ) d ξ d τ ] 1 2 ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 3 ) 2 A T 1 2 [ ( 0 t 0 1 b 2 ( ξ , τ ) d ξ d τ ) 2 ] 1 2 .

In the same way, for a general value of N we have

| u ( N + 1 ) ( t , ε ) u ( N ) ( t , ε ) | 2 | u 0 ( N + 1 ) ( t , ε ) u 0 ( N ) ( t , ε ) | + 4 k = 1 ( | u 2 k ( N + 1 ) ( t , ε ) u 2 k ( N ) ( t , ε ) | + | u 2 k 1 ( N + 1 ) ( t , ε ) u 2 k 1 ( N ) ( t , ε ) | ) ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) N A T N ! [ ( 0 t 0 1 b 2 ( ξ , τ ) d ξ d τ ) 2 ] N 2 ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) N A T 1 N ! b ( x , t ) L 2 ( D ) N .
(12)

Then the last inequality shows that the u ( N + 1 ) (t,ε) converge in B.

Now let us show lim N u ( N + 1 ) (t,ε)=u(t,ε). Noting that

2 | 0 t 0 1 { f [ ξ , τ , A u ( ξ , τ , ε ) ] f [ ξ , τ , A u ( N ) ( ξ , τ , ε ) ] } ξ d ξ d τ | + 4 | k = 1 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 { f [ ξ , τ , A u ( ξ , τ , ε ) ] f [ ξ , τ , A u ( N ) ( ξ , τ , ε ) ] } sin 2 π k ξ d ξ d τ | + 4 | k = 1 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 { f [ ξ , τ , A u ( ξ , τ , ε ) ] f [ ξ , τ , A u ( N ) ( ξ , τ , ε ) ] } ξ cos 2 π k ξ d ξ d τ | + 4 | k = 1 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 ( t τ ) { f [ ξ , τ , A u ( ξ , τ , ε ) ] f [ ξ , τ , A u ( N ) ( ξ , τ , ε ) ] } sin 2 π k ξ d ξ d τ | + 4 | k = 1 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 ( 2 π k ) 2 1 + ε ( 2 π k ) 2 ( t τ ) { f [ ξ , τ , A u ( ξ , τ , ε ) ] f [ ξ , τ , A u ( N ) ( ξ , τ , ε ) ] } sin 2 π k ξ d ξ d τ | ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) b ( x , t ) L 2 ( D ) u ( τ , ε ) u ( N ) ( τ , ε ) B ,

it follows that if we prove lim N u ( τ , ε ) u ( N ) ( τ , ε ) B =0, then we may deduce that u(t,ε) satisfies (9).

To this aim we estimate the difference u ( t , ε ) u ( N + 1 ) ( t , ε ) B ; after some transformation we obtain

| u ( t , ε ) u ( N + 1 ) ( t , ε ) | = 2 | u 0 ( t , ε ) u 0 ( N + 1 ) ( t , ε ) | + 4 k = 1 ( | u 2 k ( t , ε ) u 2 k ( N + 1 ) ( t , ε ) | + | u 2 k 1 ( t , ε ) u 2 k 1 ( N + 1 ) ( t , ε ) | ) 2 | 0 t 0 1 { f [ ξ , τ , A u ( ξ , τ , ε ) ] f [ ξ , τ , A u ( N ) ( ξ , τ , ε ) ] } ξ d ξ d τ | + 4 | k = 1 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 { f [ ξ , τ , A u ( ξ , τ , ε ) ] f ( ξ , τ , A u ( N ) ( ξ , τ , ε ) ] } sin 2 π k ξ d ξ d τ | + 4 | k = 1 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 { f [ ξ , τ , A u ( ξ , τ , ε ) ] f [ ξ , τ , A u ( N ) ( ξ , τ , ε ) ] } ξ cos 2 π k ξ d ξ d τ | + 4 | k = 1 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 ( t τ ) { f [ ξ , τ , A u ( ξ , τ , ε ) ] f [ ξ , τ , A u ( N ) ( ξ , τ , ε ) ] } sin 2 π k ξ d ξ d τ | + 4 | k = 1 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 ( 2 π k ) 2 1 + ε ( 2 π k ) 2 ( t τ ) { f [ ξ , τ , A u ( ξ , τ , ε ) ] f [ ξ , τ , A u ( N ) ( ξ , τ , ε ) ] } sin 2 π k ξ d ξ d τ | .

Adding and subtracting f(ξ,τ,A u ( N + 1 ) (ξ,τ,ε)) under the appropriate integrals to the right hand side of the inequality we obtain

| u ( t , ε ) u ( N + 1 ) ( t , ε ) | ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) { 0 t 0 1 b 2 ( ξ , τ ) | u ( τ , ε ) u ( N + 1 ) ( τ , ε ) | 2 d ξ d τ } 1 2 + ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) { 0 t 0 1 b 2 ( ξ , τ ) d ξ d τ } 1 2 u ( N + 1 ) ( t , ε ) u ( N ) ( t , ε ) B .

Applying the Gronwall Inequality to the last inequality and using inequality (11), we have

u ( t , ε ) u ( N + 1 ) ( t , ε ) B 2 N ! A T ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) ( N + 1 ) b ( x , t ) L 2 ( D ) ( N + 1 ) exp ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) 2 b ( x , t ) ) L 2 ( D ) 2 .
(13)

For the uniqueness, we assume that problem (1)-(4) has two solutions u, v. Applying the Cauchy Inequality, the Hölder Inequality, the Lipschitzs Condition, and the Bessel Inequality to the right hand side of |u(t,ε)v(t,ε)|, respectively, we obtain

| u ( t , ε ) v ( t , ε ) | 2 ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) 2 0 t 0 1 b 2 ( ξ , τ ) | u ( τ , ε ) v ( τ , ε ) | 2 d ξ d τ ,

applying the Gronwall Inequality to the last inequality we have

u(t,ε)=v(t,ε).

The theorem is proved. □

3 Solution of problem (1)-(4)

Using the solution of the system (9) we compose the series

2 u 0 (t,ε)+4 k = 1 [ u 2 k ( t , ε ) ( 1 x ) sin 2 π k x + u 2 k 1 ( t , ε ) cos 2 π k x ] .

It is evident that the series converges uniformly on D. Therefore the sum

u(ξ,τ,ε)=2 u 0 (τ,ε)+4 k = 1 [ u 2 k ( τ , ε ) ( 1 ξ ) sin 2 π k ξ + u 2 k 1 ( τ , ε ) cos 2 π k ξ ] ,

is continuous on D. We have

u l (ξ,τ,ε)=2 u 0 (τ,ε)+4 k = 1 ł [ u 2 k ( τ , ε ) ( 1 ξ ) sin 2 π k ξ + u 2 k 1 ( τ , ε ) cos 2 π k ξ ] .
(14)

From the conditions of Theorem 4 and from

lim l u l (ξ,τ,ε)=u(ξ,τ,ε),

it follows that

lim l f ( ξ , τ , u l ( τ , ξ , ε ) ) =f ( ξ , τ , u ( ξ , τ , ε ) ) .

Using

u l (ξ,τ,ε)

and

φ l (x)=2 φ 0 +4 k = 1 l [ φ 2 k ( 1 x ) sin 2 π k x + φ 2 k 1 cos 2 π k x ] ,x[0,1],

on the left hand side of (5) we denote the obtained expression by J l :

J l = 0 T 0 1 [ ( v t + 2 v x 2 ε 3 v x 2 t ) u ( l ) ( x , t , ε ) + f ( x , t , u ( l ) ( x , t , ε ) ) v ( x , t ) ] d x d t + 0 1 φ ( l ) ( x ) [ v ( x , 0 ) ε 3 v ( x , 0 ) x 2 ] d x .
(15)

Applying the integration by parts the formula on the right hand side, the last equation, and using the conditions of Theorem 4, we can show that

lim J l l =0.

This shows that the function u(x,t,ε) is a generalized (weak) solution of problem (1)-(4).

The following theorem shows the existence and uniqueness results for the generalized solutions of problem (1)-(4).

Theorem 5 Under the assumptions of Theorem  4, problem (1)-(4) possesses a unique generalized solution u=u(x,t)C( D ¯ ) in the following form:

u(x,t,ε)=2 u 0 (t,ε)+4 k = 1 [ u 2 k ( t , ε ) ( 1 x ) sin 2 π k x + u 2 k 1 ( t , ε ) cos 2 π k x ] .

4 Continuous dependence upon the data

In this section, we shall prove the continuous dependence of the solution u=u(x,t,ε) using an iteration method.

Theorem 6 Under the conditions of Theorem  4, the solution u=u(x,t,ε) depends continuously upon the data.

Proof Let ϕ={φ,f} and ϕ ¯ ={ φ ¯ , f ¯ } be two sets of data which satisfy the conditions of Theorem 4. Let u=u(x,t,ε) and v=v(x,t,ε) be the solutions of problem (1)-(4) corresponding to the data ϕ and ϕ ¯ , respectively, and

|f(t,x,0) f ¯ (t,x,0)| ε 1 ,for  ε 1 0.

The solution v=v(x,t,ε) is defined by the following forms, respectively:

v 0 ( t , ε ) = φ ¯ 0 + 0 t f ¯ 0 ( τ ) d τ , v 2 k ( t , ε ) = φ ¯ 2 k e ( 2 π k ) 2 t 1 + ε ( 2 π k ) 2 + 1 1 + ε ( 2 π k ) 2 0 t f ¯ 2 k ( τ ) e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 d τ , v 2 k 1 ( t , ε ) = ( φ ¯ 2 k 1 φ ¯ 2 k + ( 2 π k ) 2 1 + ε ( 2 π k ) 2 φ ¯ 2 k ) e ( 2 π k ) 2 t 1 + ε ( 2 π k ) 2 + 1 1 + ε ( 2 π k ) 2 0 t e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 [ f ¯ 2 k 1 ( τ ) ( 1 ( 2 π k ) 2 1 + ε ( 2 π k ) 2 ) ( t τ ) f ¯ 2 k ( τ ) ] d τ ,

where

φ ¯ k = 0 1 φ ¯ (x) Y k (x)dx, f ¯ k (x)= 0 1 f ¯ (x,t,u) Y k (x)dx.

For simplicity, let us write

A v ( N ) ( ξ , τ ) = 2 v 0 ( N ) ( τ , ε ) + 4 k = 1 ( v 2 k ( N ) ( τ , ε ) ( 1 ξ ) sin 2 π k ξ + v 2 k 1 ( N ) ( τ ) cos 2 π k ξ ) , v 0 ( N + 1 ) ( t , ε ) = v 0 ( 0 ) ( t , ε ) + 0 t 0 1 f ¯ ( ξ , τ , A v ( N ) ( ξ , τ , ε ) ) ξ d ξ d τ , v 2 k ( N + 1 ) ( t , ε ) = v 2 k ( 0 ) ( t , ε ) + 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f ¯ ( ξ , τ , A v ( N ) ( ξ , τ , ε ) ) sin 2 π k ξ d ξ d τ , v 2 k 1 ( N + 1 ) ( t , ε ) = v 2 k 1 ( 0 ) ( t , ε ) + 1 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f ¯ ( ξ , τ , A v ( N ) ( ξ , τ , ε ) ) ξ cos 2 π k ξ d ξ d τ 4 π k 1 + ε ( 2 π k ) 2 0 t 0 1 e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 f ¯ ( ξ , τ , A v ( N ) ( ξ , τ , ε ) ) ( t τ ) sin 2 π k ξ d ξ d τ ,

where v 0 ( 0 ) (t)= φ ¯ 0 , v 2 k ( 0 ) (t)= φ ¯ 2 k e ( 2 π k ) 2 t 1 + ε ( 2 π k ) 2 , v 2 k 1 ( 0 ) (t)=( φ ¯ 2 k 1 4πk φ ¯ 2 k ) e ( 2 π k ) 2 t 1 + ε ( 2 π k ) 2 . From the condition of the theorem we have v ( 0 ) (t,ε)B. We will prove that the other sequential approximations satisfy this condition. First of all, we consider u ( 1 ) (t,ε) v ( 1 ) (t,ε):

u ( 1 ) ( t , ε ) v ( 1 ) ( t , ε ) = 2 ( u 0 ( 1 ) ( t , ε ) v 0 ( 1 ) ( t , ε ) ) + 4 k = 1 [ ( u 2 k ( 1 ) ( t , ε ) v 2 k ( 1 ) ( t , ε ) ) + ( u 2 k 1 ( 1 ) ( t , ε ) v 2 k 1 ( 1 ) ( t , ε ) ) ] = ( φ 0 φ ¯ 0 ) + 2 0 t 0 1 [ f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) f ¯ ( ξ , τ , A v ( 0 ) ( ξ , τ , ε ) ) ] ξ d ξ d τ + 4 ( φ 2 k φ ¯ 2 k ) e ( 2 π k ) 2 t + 4 0 t 0 1 [ f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) f ¯ ( ξ , τ , A v ( 0 ) ( ξ , τ , ε ) ) ] e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 sin 2 π k ξ d ξ d τ + ( 4 ( φ 2 k 1 φ ¯ 2 k 1 ) 16 π k ( φ 2 k φ ¯ 2 k ) ) e ( 2 π k ) 2 t 1 + ε ( 2 π k ) 2 + 4 0 t 0 1 [ f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) f ¯ ( ξ , τ , A v ( 0 ) ( ξ , τ , ε ) ) ] e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 ξ cos 2 π k ξ d ξ d τ 16 π k 0 t 0 1 ( t τ ) [ f ( ξ , τ , A u ( 0 ) ( ξ , τ , ε ) ) f ¯ ( ξ , τ , A v ( 0 ) ( ξ , τ , ε ) ) ] e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 sin 2 π k ξ d ξ d τ .

Adding and subtracting

2 0 t 0 1 f ( ξ , τ , 0 ) ξ d ξ d τ , 2 0 t 0 1 f ¯ ( ξ , τ , 0 ) ξ d ξ d τ , 4 0 t 0 1 f ( ξ , τ , 0 ) e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 sin 2 π k ξ d ξ d τ , 4 0 t 0 1 f ¯ ( ξ , τ , 0 ) e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 sin 2 π k ξ d ξ d τ , 4 0 t 0 1 f ( ξ , τ , 0 ) e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 ξ cos 2 π k ξ d ξ d τ , 4 0 t 0 1 f ¯ ( ξ , τ , 0 ) e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 ξ cos 2 π k ξ d ξ d τ , 16 π k 0 t 0 1 f ( ξ , τ , 0 ) e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 sin 2 π k ξ d ξ d τ , 16 π k 0 t 0 1 f ¯ ( ξ , τ , 0 ) e ( 2 π k ) 2 ( t τ ) 1 + ε ( 2 π k ) 2 sin 2 π k ξ d ξ d τ

to both sides of the last equation.

Applying the Cauchy Inequality, the Hölder Inequality, the Lipschitzs Condition, and the Bessel Inequality to the right side of (11), respectively, we obtain

| u ( 1 ) ( t , ε ) v ( 1 ) ( t , ε ) | 2 | u 0 ( 1 ) ( t , ε ) v 0 ( 1 ) ( t , ε ) | + 4 k = 1 ( | u 2 k ( 1 ) ( t , ε ) v 2 k ( 1 ) ( t , ε ) | + | u 2 k 1 ( 1 ) ( t , ε ) v 2 k 1 ( 1 ) ( t , ε ) | ) 2 max | φ 0 φ ¯ 0 | + 4 k = 1 max | φ 2 k φ ¯ 2 k | + max | φ 2 k 1 φ ¯ 2 k 1 | + 2 6 | T | 3 k = 1 max | φ 2 k ′′ φ ¯ 2 k ′′ | ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) ( 0 t 0 1 b 2 ( ξ , τ ) d ξ d τ ) 1 2 | u ( 0 ) ( t , ε ) | + ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) ( 0 t 0 1 b ¯ 2 ( ξ , τ ) d ξ d τ ) 1 2 | v ( 0 ) ( t , ε ) | + ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) ( 0 t 0 1 f 2 ( ξ , τ , 0 ) f ¯ 2 ( ξ , τ , 0 ) d ξ d τ ) 1 2 , φ φ ¯ = 2 max | φ 0 φ ¯ 0 | + 4 k = 1 [ max | φ 2 k φ ¯ 2 k | + max | φ 2 k 1 φ ¯ 2 k 1 | ] φ φ ¯ = + ( 1 + 4 π 2 6 ) k = 1 max | φ 2 k ′′ φ ¯ 2 k ′′ | .

Applying the Cauchy Inequality, the Hölder Inequality, the Lipschitzs Condition, and the Bessel Inequality to u ( 2 ) (t,ε) v ( 2 ) (t,ε), respectively, we obtain

| u ( 2 ) ( t , ε ) v ( 2 ) ( t , ε ) | 2 | u 0 ( 2 ) ( t , ε ) v 0 ( 2 ) ( t , ε ) | + 4 k = 1 ( | u 2 k ( 2 ) ( t , ε ) v 2 k ( 2 ) ( t , ε ) | + | u 2 k 1 ( 2 ) ( t , ε ) v 2 k 1 ( 2 ) ( t , ε ) | ) ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) ( 0 t 0 1 b 2 ( ξ , τ ) d ξ d τ ) 1 2 A T + ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) ( 0 t 0 1 b ¯ 2 ( ξ , τ ) d ξ d τ ) 1 2 A T .

Applying the Cauchy Inequality, the Hölder Inequality, the Lipschitzs Condition, and the Bessel Inequality to u ( 3 ) (t,ε) v ( 3 ) (t,ε), respectively, we obtain

| u ( 3 ) ( t , ε ) v ( 3 ) ( t , ε ) | 2 | u 0 ( 3 ) ( t , ε ) v 0 ( 3 ) ( t , ε ) | + 4 k = 1 ( | u 2 k ( 3 ) ( t , ε ) v 2 k ( 3 ) ( t , ε ) | + | u 2 k 1 ( 3 ) ( t , ε ) v 2 k 1 ( 3 ) ( t , ε ) | ) ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) ( 0 t 0 1 b 2 ( ξ , τ ) | u ( 2 ) ( t , ε ) v ( 2 ) ( t , ε ) | 2 d ξ d τ ) 1 2 + ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) ( 0 t 0 1 b ¯ 2 ( ξ , τ ) | u ( 2 ) ( t , ε ) v ( 2 ) ( t , ε ) | 2 d ξ d τ ) 1 2 ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) 2 A T [ 0 t 0 1 b 2 ( ξ , τ ) ( 0 τ 0 1 b 2 ( ξ 1 , τ 1 ) d ξ 1 d τ 1 ) d ξ d τ ] 1 2 + ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) 2 A T [ 0 t 0 1 b 2 ( ξ , τ ) ( 0 τ 0 1 b ¯ 2 ( ξ 1 , τ 1 ) d ξ 1 d τ 1 ) d ξ d τ ] 1 2 ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) 2 A T 1 2 [ ( 0 t 0 1 b 2 ( ξ , τ ) d ξ d τ ) 2 ] 1 2 + ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) 2 A T 1 2 [ ( 0 t 0 1 b ¯ 2 ( ξ , τ ) d ξ d τ ) 2 ] 1 2 .

In the same way, for a general value of N we have

| u ( N + 1 ) ( t , ε ) v ( N + 1 ) ( t , ε ) | 2 | u 0 ( N + 1 ) ( t , ε ) v 0 ( N + 1 ) ( t , ε ) | + 4 k = 1 ( | u 2 k ( N + 1 ) ( t , ε ) v 2 k ( N + 1 ) ( t , ε ) | + | u 2 k 1 ( N + 1 ) ( t , ε ) v 2 k 1 ( N + 1 ) ( t , ε ) | ) ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) N A T N ! [ ( 0 t 0 1 b 2 ( ξ , τ ) d ξ d τ ) 2 ] N 2 + ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) N A T N ! [ ( 0 t 0 1 b ¯ 2 ( ξ , τ ) d ξ d τ ) 2 ] N 2 ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) N A T 1 N ! b ( x , t ) L 2 ( D ) N + ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) N A T 1 N ! b ¯ ( x , t ) L 2 ( D ) N A T a N = a N ( φ φ ¯ + C ( t ) + M 1 f f ¯ )

where

a N = ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) N 1 N ! [ ( 0 t 0 1 b 2 ( ξ , τ ) d ξ d τ ) 2 ] N 2 + ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) N 1 N ! [ ( 0 t 0 1 b ¯ 2 ( ξ , τ ) d ξ d τ ) 2 ] N 2

and

M 1 = ( 2 T + 3 3 + ( 1 + 2 2 π ) 3 | T | 3 ) N .

(The sequence a N is convergent; then we can write a N M, ∀N.)

It follows from the estimation [1] that lim N u ( N + 1 ) (t)=u(t); then let N for the last equation,

|u(t)v(t)|Mφ φ ¯ + M 2 f f ¯ ,

where M 2 =M M 1 . If f f ¯ ε and φ φ ¯ ε, then |u(t,ε)v(t,ε)|ε. □

5 Numerical procedure for the nonlinear problem (1)-(4)

We construct an iteration algorithm for the linearization of problem (1)-(4) for ε=0:

u ( n ) t 2 u ( n ) x 2 =f ( x , t , u ( n 1 ) ) ,(x,t)D,
(16)
u ( n ) (0,t)= u ( n ) (1,t),t[0,T],
(17)
u x ( n ) (1,t)=0,t[0,T],
(18)
u ( n ) (x,0)=φ(x),x[0,1].
(19)

Let u ( n ) (x,t)=v(x,t) and f(x,t, u ( n 1 ) )= f ˜ (x,t). Then problem (16)-(19) can be written as a linear problem:

v t 2 v x 2 = f ˜ (x,t),(x,t)D,
(20)
v(0,t)=v(1,t),t[0,T],
(21)
v x (1,t)=0,t[0,T],
(22)
v(x,0)=φ(x),x[0,1].
(23)

We use the finite difference method to solve (20)-(23).

We subdivide the intervals [0,1] and [0,T] into M and N subintervals of equal lengths, h= 1 M and τ= T N , respectively.

Then we add the line x=(M+1)h to generate the fictitious point needed for the second boundary condition.

We choose the implicit scheme, which is absolutely stable and has a second order accuracy in h and a first order accuracy in τ.

The implicit monotone difference scheme for (20)-(23) is as follows:

v i , j + 1 v i , j τ = a 2 h 2 ( v i 1 , j + 1 2 v i , j + 1 + v i + 1 , j + 1 ) + f ˜ i , j + 1 , v i , 0 = φ i , v 0 , j = v M , j , v x , M j = 0 ,

where 0iM and 1jN are the indices for the spatial and time steps, respectively, v i , j is the approximation to v( x i , t j ), f i , j =f( x i , t j ), φ i =φ( x i ), x i =ih, t j =jτ [10].

At the t=0 level, adjustment should be made according to the initial condition and the compatibility requirements.

6 Numerical examples

In this section, we will consider an example of numerical solution of the nonlinear problem (1)-(4).

These problems were solved by applying the iteration scheme and the finite difference scheme which were explained in Section 4. The condition

error(i,j):= u i , j ( n + 1 ) u i , j ( n )

with error(i,j):= 10 3 was used as a stopping criterion for the iteration process.

Example 1 Consider the problem

u t 2 u x 2 ε 3 u x 2 t = ( 1 + ( 2 π ) 2 ( 1 + ε ) ) u + ( 1 + ε ) ( 4 π cos ( 2 π x ) exp ( t ) ) , u ( x , 0 ) = ( 1 x ) sin 2 π x , x [ 0 , π ] , u ( 0 , t ) = u ( 1 , t ) , t [ 0 , T ] , u x ( 1 , t ) = 0 , t [ 0 , T ] .

It is easy to check that the analytical solution of this problem is

u(x,t)= e t (1x)sin2πx.

The comparisons between the analytical solution and the numerical finite difference solution for different ε values when T=1 are shown in Figures 1 and 2.

Figure 1
figure 1

The exact and numerical solutions of u(x,1). The exact and numerical solutions of u(x,1) for ε=0, the exact solution is shown with a dashed line.

Figure 2
figure 2

The exact and numerical solutions of u(x,1). The exact and numerical solutions of u(x,1) for ε=0.05, the exact solution is shown with a dashed line.

We show in Figure 3 the analytical solution for ε=0 and the numerical solution for ε=0, ε=0,1, ε=0,05.

Figure 3
figure 3

The exact and numerical solutions of u(x,1). The exact and numerical solutions of u(x,1), () for ε=0, () for ε=0.05, (..) for ε=0.1, the exact solution is shown with a dashed line.