Abstract
The aim of this note is to exploit a new relationship between additive combinatorics and the geometry of monomial projective curves. We associate to a finite set of nonnegative integers \(A=\{a_1,\ldots , a_n\}\) a monomial projective curve \(C_A\subset \mathbb P^{n1}_{{\mathbf {k}}}\) such that the Hilbert function of \(C_A\) and the cardinalities of \(sA:=\{a_{i_1}+\cdots +a_{i_s}\mid 1\le i_1\le \cdots \le i_s\le n\}\) agree. The singularities of \(C_A\) determines the asymptotic behaviour of sA, equivalently the Hilbert polynomial of \(C_A\), and the asymptotic structure of sA. We show that some additive inverse problems can be translate to the rigidity of Hilbert polynomials and we improve an upper bound of the CastelnuovoMumford regularity of monomial projective curves by using results of additive combinatorics.
Similar content being viewed by others
Avoid common mistakes on your manuscript.
1 Introduction
Let \(A=\{a_1,\ldots , a_n\}\), \(n\ge 2\), be a set of different nonnegative integers; we assume that \(a_1<\cdots <a_n\). Given a nonnegative integer \(s\ge 1\) the sfold iterated sumset of A is
we set \(0A=\{0\}\); notice that \(1 A=A\).
Following Nathanson, a direct problem in additive combinatorics is a problem in which we try to determine the structure and properties of sA, \(s\ge 0\), when the set A is known. On the other hand, an inverse problem in additive combinatorics is a problem in which we attempt to deduce properties of A from properties of sA, \(s\ge 0\), [22].
The aim of this paper is to establish and to study a bridge between additive combinatorics and the geometry of monomial projective curves. We argue back and forth: we use results of monomial projective curves to recover or to improve results of additive combinatorics and vice versa, see Theorems 4.3 and 4.7. In particular, we show that some inverse problems can be translate in terms of the rigidity of Hilbert polynomials, see Sects. 4 and [9].
In this paper, we have selected some significative results of the geometry of monomial projective curves and additive combinatorics; there are a huge number of results and properties of both areas to link that we will consider elsewhere, see [5].
The contents of the paper is the following. In the second section, following [8], we attach to the set A a monomial projective curve \(C_A\subset \mathbb P_{{\mathbf {k}}}^{n1}\). The Hilbert function of \(C_A\) and the cardinalities of sA, \(s\ge 0\), agree. Some previous results can be found in Ref. [16].
In the section, three we use the data provided by the singularities of \(C_A\) to determine the asymptotic behaviour of sA, equivalently the Hilbert polynomial of \(C_A\), Proposition 3.1. As a consequence we can describe the asymptotic decomposition of sA of the socalled fundamental result of additive combinatorics, Propositions 3.3 and 3.4.
The Sect. 4 is devoted to recover, by considering generic hyperplane sections of \(C_A\), some additive inverse results and to link them with rigid polynomials and rigid properties, Proposition 4.2, Theorem 4.3. We finish the paper improving an upper bound on the CastelnuovoMumford regularity of \(C_A\) established in [1] using a result of Lev on the growth of sA, Theorem 4.7.
For the basic results on algebra, algebraic geometry or additive number theory we will use: [2, 13, 22]. The computations of this paper are performed by using Singular, [6].
Notations
In this paper \({\mathbf {k}}\) is an arbitrary infinite field. Let \(R=\sum _{i\ge 0} R_i\) be an standard \({\mathbf {k}}=R_0\) algebra, i.e., \(R={\mathbf {k}}[R_1]\). We denote by \({{\text {H\!F}}}_R\) the Hilbert function of R, i.e., \({{\text {H\!F}}}_R(i)={\text {dim}}_{{\mathbf {k}}} R_i\) for all \(i\ge 0\). It is known that there exists a rational coefficient polynomial \({\text {H\!P}}_R\), Hilbert polynomial of R, such that \({\text {H\!P}}(i)={{\text {H\!F}}}(i)\) for \(i\gg 0\).
Given a set B of nonnegative integers \(b_1,\dots ,b_n\) we denote by \(\langle b_1,\ldots ,b_n\rangle \) the subsemigroup of \(\mathbb N\) generated by B. Given a multiindex \(\alpha =(\alpha _1,\ldots ,\alpha _n) \in \mathbb N^n\) we define its total order by \(\alpha =\sum _{i=1}^n \alpha _i\) and the total order with respect to A by \(\alpha _A=\sum _{i=1}^n a_i \alpha _i\).
2 The Bridge Between Additive Number Theory and Projective Curves
We first show that we can consider several straight simplifications on the set A and an easy property on the growth of sA, see [22],
Lemma 2.1
Given a set of nonnegative integers \(A=\{a_1,\ldots , a_n\}\), \(n\ge 2\), with \(a_1<\cdots <a_n\), it holds:

(1)
To compute sA we may assume that \(a_1=0\) and \(\gcd (a_2,\ldots , a_n)=1\),

(2)
under the above conditions, \((s+1)A\ge sA+n1\) for all \(s\ge 0\).
Proof

(1)
Let us consider \(A'=\{0, (a_2a_1)/d,\ldots , (a_na_1)/d\}\) where \(d=\gcd (a_2a_1,\ldots , a_na_1)\). It is easy to see that \(sA =sA'\) for all \(s\ge 0\).

(2)
Assume that A satisfies the conditions of (1). Since the maximum of sA is \(sa_n\) we deduce that \(s a_n+a_2,\ldots , sa_n+a_n\in (s+1)A\setminus sA\), so we get the claim: \((s+1)A\ge sA+n1\) for all \(s\ge 0\).
Given a general set of nonnegative integers A, the associated set \(A'\) of the proof of the previous Lemma, is called the normal form of A, see [22]. From now on we assume that a set A satisfies Lemma 2.1 (1).
Next, we recall the key construction of [8].
Definition 2.2
We denote by R(A) the \({\mathbf {k}}\)subalgebra of \({\mathbf {k}}[t,w]\) generated by \(t^{a_i} w\), \(i=1,\dots , n\). We consider \({\mathbf {k}}[t,w]\) endowed with the grading defined by \({\text {deg}}(t)=0\), \({\text {deg}}(w)=1\).
Let \(\phi ={\mathbf {k}}[X_1,\ldots , X_n]\longrightarrow {\mathbf {k}}[t,w]\) the degree zero \({\mathbf {k}}\)algebra morphism defined by \(\phi (X_i)=t^{a_i} w\). We have \({\text {Im}}(\phi )=R(A)\) and the homogeneous piece of degree s of R(A), i.e. \(R(A)_s\), admits the \({\mathbf {k}}\)basis
From this fact we get:
Proposition 2.3
[8, Sect. 2] For all \(s\ge 0\) it holds \({{\text {H\!F}}}_{R(A)}(s)=sA\).
In the following result a system of generators of \({\text {Ker}}(\phi )\) is computed:
Proposition 2.4
[4, Proposizione 2.2], [8, Proposition 6.4] The kernel of \(\phi \) is generated by the binomials \(X^\alpha X^\beta \), \(\alpha , \beta \in \mathbb N^n\), such that \(\alpha =\beta \) and \(\alpha _A=\beta _A\).
Next, we link R(A) with a suitable monomial projective curve.
Definition 2.5
Given a set \(A=\{a_1=0,a_2,\ldots , a_n\}\) such that \(a_1<\cdots < a_n\) and \(\gcd (a_2,\ldots , a_n)=1\) we consider the monomial curve \(C_A\) of \(\mathbb P_{{\mathbf {k}}}^{n1}\) defined by the Kernel of
If we consider the standard grading of \({\mathbf {k}}[u,v]\) we get that \({\text {Ker}}(\psi )=I_{A}\) is a homogeneous ideal of \({\mathbf {k}}[X_1,\ldots , X_n]\). We denote by \({\mathbf {k}}[C_A]:={\mathbf {k}}[X_1,\ldots ,X_n]/{\text {Ker}}(\phi )\) the homogeneous coordinate ring of \(C_A\). We write \({{\text {H\!F}}}_{C_A}={{\text {H\!F}}}_A\) and \({\text {H\!P}}_{C_A}={\text {H\!P}}_A\).
Proposition 2.6
For all set \(A=\{a_1=0,a_2,\ldots , a_n\}\) we have that \({\text {Ker}}(\phi )=I_{A}\). Hence \(R(A)\cong {\mathbf {k}}[C_A]\) as graded kalgebras.
Proof
We first prove that \({\text {Ker}}(\phi )\subset I_A\). Let’s consider a binomial \(X^\alpha X^\beta \), \(\alpha , \beta \in \mathbb N^n\), with \(\alpha =\beta \) and \(\alpha _A=\beta _A\). Then
by Proposition 2.4 we get that \({\text {Ker}}(\phi )\subset {\text {Ker}}(\psi )=I_A\).
Next, we prove that \(I_A\subset {\text {Ker}}(\phi )\). Let \(F\in I_A\) be a polynomial, so
If \(X^\alpha \), \(\alpha \in \mathbb N^n\), is a monomial of F then
Hence we may assume that F is a homogeneous polynomial
such that \(\alpha _i_A=c\), \(a_n\alpha _i=c+d\) and \(\lambda _i\in {\mathbf {k}}\setminus \{0\}\).
Since \(F(u^{a_n}, u^{a_na_2}v^{a_2},\ldots , u^{a_na_{n1}}v^{a_{n1}}, v^{a_n})=0\) we deduce that \(\sum _{i=1}^d \lambda _i =0,\) so
Remark 2.7
We write \(\mathcal B_A=\frac{{\mathbf {k}}[C_A]}{X_1 {\mathbf {k}}[C_A]}\), notice that \(\mathcal B_A\) is a graded algebra of dimension one since the coset of \(X_1\) is a nonzero divisor of \({\mathbf {k}}[C_A]\); \(\mathcal B_A\) is the homogeneous coordinate ring of the hyperplane section of \(C_A\) defined by \(X_1=0\). Both algebras \({\mathbf {k}}[C_A]\) and \(\mathcal B_A\) are standard algebras, i.e. generated by their homogeneous pieces of degree one, i.e. \({\mathbf {k}}[C_A]_1\) and \((\mathcal B_A)_1\), respectively. In general \(\mathcal B_A\) is non Cohen–Macaulay as the classic example of Macaulay shows, see Example 4.8.
Example 2.8
Let us consider the set \(A=\{0,2,4,5,7\}\). The associated monomial curve \(C_A\) is defined by the parameterization \((u,v)\mapsto (u^7,u^5v^2,u^3v^4,u^2v^5,v^7)\). Then the defining ideal of \(C_A\) is minimally generated by \(x_2^2x_1 x_3, x_2 x_4x_1 x_5, x_3 x_4x_2 x_5, x_2 x_3^2x_1 x_4^2, x_3^3x_1 x_4 x_5, x_4^3x_3^2 x_5 \), [6]. The Hilbert function of \(C_A\) is \({{\text {H\!F}}}_A=\{1,5,12,19, 26, 33, \ldots \}\) and the Hilbert polynomial \({\text {H\!P}}_A(s)=7s2\).
3 Sumsets and Monomial Projective Curves
We first recall some well known results on curves applied to the projective curve \(C_A\), [13]. The monomial projective curve \(C_A\) is rational with two eventually singular points \(P_1=(1,0,\ldots ,0), P_2=(0,\ldots ,0,1)\in \mathbb P^{n1}_{{\mathbf {k}}}\). In the affine open neighborhood \(X_1=1\) of \(P_1\) the curve \(C_A\) is defined by the parameterization \(v\mapsto (v^{a_2},\ldots , v^{a_n})\); and in the open affine neighborhood \(X_n=1\) of \(P_2\) the curve is defined by the parameterization \(u\mapsto (u^{a_n}, u^{a_na_2}, \ldots ,u^{a_na_{n1}})\). The point \(P_1\) is nonsingular iff \(a_2=1\) and \(P_2\) is nonsingular iff \(a_na_{n1}=1\).
We denote by \(p_a(C_A)\) the arithmetic genus of \(C_A\), i.e.,
Since \(C_A\) is rational its geometric genus is zero and
where \(\delta (C_A,P)\) is the singularity order of \(P\in Sing(C_A)\), i.e.
where the overline stands for the integral closure of \({\mathcal O_{C_A,P}}\) in its field of fractions. Summarizing, we get
Since \(C_A\) is a monomial curve in an affine neighbourhood of \(P_1\) (resp. \(P_2\)) we have
and
We know that the Hilbert polynomial \({\text {H\!P}}_A(s)\) and the Hilbert function \({{\text {H\!F}}}_A(s)\) agree for \(s\gg 0\). The first integer \(s_0\) such that \({{\text {H\!F}}}_A(s)={\text {H\!P}}_A(s)\) for all \(s\ge s_0\) is called the regularity of the Hilbert function and it is denoted by \(r(C_A)\).
The Castelnuovo–Mumford regularity \(\mathrm{reg}(C_A)\) of \(C_A\), see [7], for monomial projective curves is upper bounded in terms of the set A. From [19, Proposition 5.5], see also [14],
since \(r(C_A)\le \mathrm{reg}(C_A)\) we get that \({{\text {H\!F}}}_A(s)={\text {H\!P}}_A(s)\) for all \(s\ge \rho (A)\).
Notice that \(\rho _A\le a_nn+3\). This inequality can be deduced from the upper bound of the Castelnuovo–Mumford regularity conjectured by Eisenbud and Goto and proved by Gruson–Lazarsfeld–Peskine in the case of smooth curves, [12]. If \(C_A\) is nonsingular then we have a better upper bound of the Castelnuovo–Mumford regularity, [14, Theorem 2.7],
The following result describes the asymptotic behaviour of sA, see [11, 16, 23].
Proposition 3.1
Given a set \(A=\{a_1=0, a_2,\ldots , a_n\}\) of integers such that \(a_0< a_1< \cdots <a_n\) with \(\gcd (a_2,\ldots , a_n)=1\) it holds
for all \(s\ge \rho (A)\).
Proof
We know that \(C_A\) is a degree \(a_n\) projective curve, so
Since \({{\text {H\!F}}}_A(s)={\text {H\!P}}_A(s)\) for all \(s\ge \rho (A)\) and we know that \(sA={{\text {H\!F}}}_A(s)\) for all \(s\ge 0\), we get the claim.
Corollary 3.2
\(\mathcal B_A\) is a onedimensional standard graded algebra of multiplicity \(a_n\).
Proof
Since \(X_1\) is a nonzero divisor of \({\mathbf {k}}[C_A]\), Remark 2.7, we get the claim from the last proposition.
The often called fundamental result of additive combinatorics claims:
Proposition 3.3
[22, Theorem 1.1] Given a set \(A=\{a_1=0, a_2,\ldots , a_n\}\) of integers such that \(a_0< a_1< \cdots <a_n\) with \(\gcd (a_2,\ldots , a_n)=1\), there exists a positive integer \(\sigma \), nonnegative integers \(c_1, c_2\) and finite sets \(C_1\subset [0,c_12]\) and \(C_2\subset [0,c_22]\) such that
for all \(s\ge \sigma \).
Notice that from the above identity of sets we deduce
for \(s\ge \sigma \). From Proposition 3.1 we get that
Let \(\Gamma _1\) be the semigroup generated by \(a_1,\ldots , a_n\) and let \(\Gamma _2\) be the semigroup generated by \(a_na_{n1},\ldots , a_na_2, a_n\). Notice that \(\Gamma _i\) is the semigroup of the curve singularity germ \((C_A, P_i)\), \(i=1,2\).
Next, we determine the set \(C_i\) and the integer \(c_i\), \(i=1,2\), in terms of the eventual singular points of the projective curve \(C_A\). Notice that \(C_i=\emptyset \) iff \(P_i\) is a nonsingular point of \(C_A\), \(i=1,2\).
Proposition 3.4
Following the notations of Proposition 3.3, we have that, \(i=1,2\),
\(c_i\) is the conductor of \(\Gamma _i\) and \(C_i=\Gamma _i\cap [0,c_i2]\).
Proof
We only have to prove the result for \(i=1\). Notice that if \(s\ge {\text {Max}}\{\sigma , (c_1+c_2)/a_n\}\) then
Moreover, since \(sA\subset (s+1)A\), \(s\ge 1\), we have for all \(s\gg 0\) that
From this we get that \(c_1\) is the conductor of \(\Gamma _1\) and that
Example 3.5
We consider the set \(A=\{0,2,4,5,7\}\) of Example 2.8. The decomposition of 5A is
so \(c_1=4\), \(C_1=\{0,2\}\), \(c_2=2\) and \(C_2=\{0\}\). In this case we have \(\Gamma _1=\{0,2,4,5,\ldots \}\), \(\Gamma _2=\{0,2,3,\ldots \}\) and \(\delta _1=2\), \(\delta _1=1\).
4 Rigid Hilbert Polynomials and Additive Inverse Problems
In this section, we link the inverse problems with the rigidity of Hilbert polynomials and functions, [9, 10]. In particular, we will recover several upper and lower bounds of the function sA from some properties of the Hilbert function of \(C_A\).
Definition 4.1
Let \(H:\mathbb N\longrightarrow \mathbb N\) be a numerical function asymptotically polynomial, i.e. there exists a polynomial \(p(T)\in \mathbb Z[T]\) such that \(H(s)=p(s)\) for \(s\gg 0\). Let \(\mathcal C\) be a class of graded \({\mathbf {k}}\)algebras. We say that p(T) is a rigid polynomial for the class \(\mathcal C\) if for all graded \({\mathbf {k}}\) algebra D of \(\mathcal C\) if \({\text {H\!P}}_D=p\) then \({{\text {H\!F}}}_D=H\), see [9].
From Lemma 2.1 (2) we get:
Proposition 4.2
[22, Theorems 1.3] Given a set \(A=\{a_1=0, a_2,\ldots , a_n\}\) of integers such that \(a_0< a_1< \cdots <a_n\) with \(\gcd (a_2,\ldots , a_n)=1\), for all \(s\ge 0\) it holds
Proof
From Lemma 2.1 (2) we deduce the left hand inequality. The right hand inequality follows from Proposition 2.6.
In the next result we get [22, Theorems 1.2, 1.6 and 1.8]; in particular we prove that \(p(T)=(n1)T+1\) is a rigid polynomial for the class of \({\mathbf {k}}[C_A]\) algebras and that the condition \(sA= s(n1)+1\), for some \(s\ge 2\), is a rigid property, i.e., determines the whole Hilbert function, see [10].
Theorem 4.3
[22, Theorems 1.2, 1.6, 1.8] Given a set \(A=\{a_1=0, a_2,\ldots , a_n\}\) of integers such that \(a_0< a_1< \cdots <a_n\) with \(\gcd (a_2,\ldots , a_n)=1\), the following conditions are equivalent:

(1)
\(sA=s(n1)+1+ o(s)\) for infinitely many s, where o(s) is an arithmetic function such that \(\lim _{s\rightarrow \infty } o(s)=0\),

(2)
\(sA= s(n1)+1\) for all \(s\gg 0\),

(3)
\(sA= s(n1)+1\) for some \(s\ge 2\),

(4)
\(A=\{0,1,\ldots , n1\}\),

(5)
\(sA= s(n1)+1\) for all \(s\ge 0\).
Proof
By Proposition 3.1 we get that (1) implies (2). On the other hand, (2) trivially implies (3).
Assume (3), i.e., \(sA= s(n1)+1\) for some \(s\ge 2\). Notice that
and, since \((s1) a_n\) is the maximum of \((s1)A\), we have
By Proposition 4.2 we have \((s1)A\ge (s1)(n1)+1\), so
We know that \({\mathbf {k}}[C_A]_s\) has as \({\mathbf {k}}\)basis the monomials \(t^{\alpha }w^s, \alpha \in sA\) and \(X_1{\mathbf {k}}[C_A]_{s1}\) is generated by \(t^{\alpha +a_1}w^s, \alpha \in (s1)A\). By (2) we have that \((s1)A+a_1\subset (s1)A\) so the \({\mathbf {k}}\)vector space
is generated by the cosets of
This fact implies that
Since the algebra \(\mathcal B_A\) is standard we get, multiplying both sides by \( (\mathcal B_A)_{(r1)(s1)}\), that
for all \(r\ge 1\). Since \({\text {dim}}_{{\mathbf {k}}}((\mathcal B_A)_t)=n1 \), for \(t\gg 0\) we obtain, Proposition 3.2,
for \(r\gg 0\). Hence \(a_n\le n1 \) and we get (4).
The remaining implications are easy computations.
Remark 4.4
The curve \(C_A\) for \(A=\{0,\ldots , n1\}\) is the rational normal curve of \(\mathbb P^{n1}_{{\mathbf {k}}}\), i.e., the curve defined by \((u,v)\mapsto (u^{n1},u^{n2}v,\ldots , uv^{n2},v^{n1})\).
Remark 4.5
From Lemma 2.1 (1) we get for a general set A that \(sA= s(n1)+1\) for all \(s\ge 0\) if and only if A is a nterm arithmetic progression, i.e., \(A=q_0+ q_1 [0,\ldots , n1]\) for \(q_0\in \mathbb N\) and \(q_1\in \mathbb N\setminus \{0\}\).
Next we use a result on additive combinatorics in order to improve an upper bound of the Castelnuovo–Mumford regularity of rational projective curves. We first recall the following result of Lev:
Proposition 4.6
[18, Theorem 1] Given \(A=\{a_1=0, a_2,\ldots , a_n\}\) with \(\gcd (a_2,\ldots , a_n)=1\), it holds:
for all \(s\ge 2\).
In the following result we improve [1, Theorem 2.7], see also [17], where an upper bound of the Castelnuovo–Mumford regularity is given for a monomial projective curve \(C_A\) under the hypothesis that A is an arithmetic sequence. We know that
so last result shows that the Hilbert function of the onedimensional graded algebra \(\mathcal B_A\) grows rapidly. This is the key point in the proof of the following result where we assume that \({\mathbf {k}}[C_A]\) is Cohen–Macaulay. See [3, 15] for several criteria implying the Cohen–Macaulayness of \({\mathbf {k}}[C_A]\).
Theorem 4.7
Given \(A=\{a_1=0, a_2,\ldots , a_n\}\) with \(\gcd (a_2,\ldots , a_n)=1\). If the twodimensional ring \({\mathbf {k}}[C_A]\) is Cohen–Macaulay then
Proof
We write \(s_0=\lceil \frac{a_n1}{n2}\rceil \). Since \({\mathbf {k}}[C_A]\) is Cohen–Macaulay we have \(r(C_A)+1=\mathrm{reg}({\mathbf {k}}[C_A])\) and that \(\mathcal B_A\) is a onedimensional Cohen–Macaulay ring. Hence we have
for all \(s\ge 1\), [21, Chapter XII]. From this inequality and Proposition 4.6, we get
for \(s=1,\ldots , s_01\); and
for \(s\ge s_0\), i.e. \(r(\mathcal B_A)\le s_0\). Since \(r(C_A)+1 =r(\mathcal B_A)\) we get the claim:
Example 4.8
(Macaulay’s example) In this example we consider the example of a nonsingular, nonCohen–Macaulay monomial projective curve given by Macaulay, [20]. In this case the set is \(A=\{0,1,3,4\}\). The monomial curve \(C_A\) associated to A is defined by the parameterization \((u,v)\mapsto (u^4,u^3v,uv^3,v^4)\). A computation with Singular [6] give us that \({{\text {H\!F}}}_A=\{1,4,9,13,17,21,\ldots \}\) and \({\text {H\!P}}_A(s)=4 s +1\). Since the points \(P_1, P_2\) are nonsingular points of \(C_A\), we deduce last identity from Proposition 3.1 as well.
Example 4.9
We consider a especial case of [17, Case A]. Let us consider the set \(A=\{0,7,8,9,10\}\). From [17, Theorem 2.1] we know that \({\mathbf {k}}[C_A]\) is Cohen–Macaulay and that \(r(C_A)=5\) that agrees with the upper bound of the Theorem 4.7. The defining ideal of \(C_A\) is minimally generated by: \(x_3^2 x_2 x_4, x_3 x_4 x_2 x_5, x_4^2 x_3 x_5, x_2^4 x_1 x_3 x_5^2, x_2^3 x_3 x_1 x_4 x_5^2, x_2^3 x_4 x_1 x_5^3.\) A straight computation shows
and the Hilbert polynomial of \(C_A\) is \({\text {H\!P}}_A=10s8\).
References
Bermejo, I., GarcíaLlorente, E., GarcíaMarco, I.: Algebraic invariants of projective monomial curves associated to generalized arithmetic sequences. J. Symbolic Comput. 81, 1–19 (2017)
Bruns, W., Herzog, J.: Cohen–Macaulay Rings, Revised Edition, Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1997)
Cavaliere, M.P., Niesi, G.: On monomial curves and Cohen–Macaulay type. Manuscr. Math. 42(2–3), 147–159 (1983)
Cavaliere, M.P., Niesi, G.: Sulle equazioni di una curva monomiale proiettiva. Ann. Univ. Ferrara Sec. VII Sc. Mat. XXX (1984)
ColarteGómez, L., Elias, J., MiróRoig, R.M.: Sumsets and Veronese varieties. Collectanea Mathematica (2022). https://doi.org/10.1007/s1334802200352x
W. Decker, G.M. Greuel, G. Pfister, H. Schönemann, Singular 430—a computer algebra system for polynomial computations. http://www.singular.unikl.de (2019). Accessed 2022
Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Springer, New York (1995)
S. Eliahou, E. Mazumdar, Iterated sumsets and Hilbert functions. arxiv:2006.08998v3 (2020)
Elias, J.: Characterization of the Hilbert–Samuel polynomials of curve singularities. Compos. Math. 74, 135–155 (1990)
Elias, J., Valla, G.: Rigid Hilbert functions. J. Pure Appl. Algebra 71, 19–41 (1991)
J. I. GarcíaGarcía, D. MarínAragón, A. VigneronTenorio, On the ideal of some sumset semigroups. arXiv:math.NT/2102.04100 (2021)
Gruson, L., Lazarsfeld, R., Peskine, C.: On a theorem of Castelnuovo, and the equations defining space curves. Invent. Math. 72(3), 491–506 (1983)
Hartshorne, R.: Algebraic geometry, Graduate Texts in Mathematics, vol. 52. Springer, Berlin (1997)
Hellus, M., Hoa, L.T., Stückrad, J.: Castelnuovo–Mumford regularity and the reduction number of some monomial curves. Proc. Am. Math. Soc. 138(1), 27–35 (2010)
Herzog, J., Stamate, D.I.: Cohen–Macaulay criteria for projective monomial curves via Groebner bases. Acta Math. Vietnam 44, 51–64 (2019)
Khovanskiĭ, A.G.: Sums of finite sets, orbits of commutative semigroups and Hilbert functions. Funktsional. Anal. i Prilozhen. 29(2), 36–50 (1995). (95)
T.T.G. Lam, On the reduction numbers and the CastelnuovoMumford regularity of projective monomial curves. arXiv:2103.08099 (2021)
Lev, V.F.: Structure theorem for multiple addition and the Frobenius problem. J. Number Theory 58(1), 79–88 (1996)
Lvovsky, S.: On inflection points, monomial curves, and hypersurfaces containing projective curves. Math. Ann. 306(4), 719–735 (1996)
Macaulay, F.S.: The Algebraic Theory of Modular Systems. Cambridge University Press, Cambridge (1916)
Matlis, E.: 1Dimensional Cohen–Macaulay Rings, L.N.M, vol. 327. Springer, New York (1977)
Nathanson, M.B.: Additive Number Theory. Inverse Problems and the Geometry of Sumsets, Graduate Texts in Mathematics, vol. 165. Springer, New York (1996)
Nathanson, M.B., Ruzsa, I.Z.: Polynomial growth of sumsets in abelian semigroups. J. Théor. Nombres Bordeaux 14(2), 553–560 (2002)
Funding
Open Access funding provided thanks to the CRUECSIC agreement with Springer Nature.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Partially supported by PID2019104844GBI00.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Elias, J. Sumsets and Projective Curves. Mediterr. J. Math. 19, 177 (2022). https://doi.org/10.1007/s00009022021080
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00009022021080