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Sumsets and Projective Curves

J. Elias

Abstract. The aim of this note is to exploit a new relationship between
additive combinatorics and the geometry of monomial projective curves.
We associate to a finite set of non-negative integers A = {a1, . . . , an} a
monomial projective curve CA ⊂ P

n−1
k such that the Hilbert function of

CA and the cardinalities of sA := {ai1+· · ·+ais | 1 ≤ i1 ≤ · · · ≤ is ≤ n}
agree. The singularities of CA determines the asymptotic behaviour of
|sA|, equivalently the Hilbert polynomial of CA, and the asymptotic
structure of sA. We show that some additive inverse problems can be
translate to the rigidity of Hilbert polynomials and we improve an upper
bound of the Castelnuovo-Mumford regularity of monomial projective
curves by using results of additive combinatorics.

Mathematics Subject Classification. Primary 13D40; Secondary 11B13,
14H45.

1. Introduction

Let A = {a1, . . . , an}, n ≥ 2, be a set of different non-negative integers; we
assume that a1 < · · · < an. Given a non-negative integer s ≥ 1 the s-fold
iterated sumset of A is

sA = {ai1 + · · · + ais | 1 ≤ i1 ≤ · · · ≤ is ≤ n},

we set 0A = {0}; notice that 1A = A.
Following Nathanson, a direct problem in additive combinatorics is a

problem in which we try to determine the structure and properties of |sA|,
s ≥ 0, when the set A is known. On the other hand, an inverse problem in
additive combinatorics is a problem in which we attempt to deduce properties
of A from properties of sA, s ≥ 0, [22].

The aim of this paper is to establish and to study a bridge between
additive combinatorics and the geometry of monomial projective curves. We
argue back and forth: we use results of monomial projective curves to recover
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or to improve results of additive combinatorics and vice versa, see Theo-
rems 4.3 and 4.7. In particular, we show that some inverse problems can be
translate in terms of the rigidity of Hilbert polynomials, see Sects. 4 and [9].

In this paper, we have selected some significative results of the geometry
of monomial projective curves and additive combinatorics; there are a huge
number of results and properties of both areas to link that we will consider
elsewhere, see [5].

The contents of the paper is the following. In the second section, fol-
lowing [8], we attach to the set A a monomial projective curve CA ⊂ P

n−1
k .

The Hilbert function of CA and the cardinalities of sA, s ≥ 0, agree. Some
previous results can be found in Ref. [16].

In the section, three we use the data provided by the singularities of
CA to determine the asymptotic behaviour of |sA|, equivalently the Hilbert
polynomial of CA, Proposition 3.1. As a consequence we can describe the as-
ymptotic decomposition of sA of the so-called fundamental result of additive
combinatorics, Propositions 3.3 and 3.4.

The Sect. 4 is devoted to recover, by considering generic hyperplane
sections of CA, some additive inverse results and to link them with rigid
polynomials and rigid properties, Proposition 4.2, Theorem 4.3. We finish the
paper improving an upper bound on the Castelnuovo-Mumford regularity of
CA established in [1] using a result of Lev on the growth of |sA|, Theorem 4.7.

For the basic results on algebra, algebraic geometry or additive number
theory we will use: [2,13,22]. The computations of this paper are performed
by using Singular, [6].

Notations

In this paper k is an arbitrary infinite field. Let R =
∑

i≥0 Ri be an
standard k = R0 algebra, i.e., R = k[R1]. We denote by HFR the Hilbert
function of R, i.e., HFR(i) = dimk Ri for all i ≥ 0. It is known that there
exists a rational coefficient polynomial HPR, Hilbert polynomial of R, such
that HP(i) = HF(i) for i � 0.

Given a set B of non-negative integers b1, . . . , bn we denote by 〈b1, . . . , bn〉
the sub-semigroup of N generated by B. Given a multi-index α = (α1, . . . , αn) ∈
N

n we define its total order by |α| =
∑n

i=1 αi and the total order with respect
to A by |α|A =

∑n
i=1 aiαi.

2. The Bridge Between Additive Number Theory and
Projective Curves

We first show that we can consider several straight simplifications on the set
A and an easy property on the growth of |sA|, see [22],

Lemma 2.1. Given a set of non-negative integers A = {a1, . . . , an}, n ≥ 2,
with a1 < · · · < an, it holds:

(1) To compute |sA| we may assume that a1 = 0 and gcd(a2, . . . , an) = 1,
(2) under the above conditions, |(s + 1)A| ≥ |sA| + n − 1 for all s ≥ 0.
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Proof. (1) Let us consider A′ = {0, (a2 − a1)/d, . . . , (an − a1)/d} where
d = gcd(a2 − a1, . . . , an − a1). It is easy to see that |sA| = |sA′| for all
s ≥ 0.

(2) Assume that A satisfies the conditions of (1). Since the maximum of sA
is san we deduce that san + a2, . . . , san + an ∈ (s + 1)A \ sA, so we get
the claim: |(s + 1)A| ≥ |sA| + n − 1 for all s ≥ 0.

Given a general set of non-negative integers A, the associated set A′ of
the proof of the previous Lemma, is called the normal form of A, see [22].
From now on we assume that a set A satisfies Lemma 2.1 (1).

Next, we recall the key construction of [8].

Definition 2.2. We denote by R(A) the k-subalgebra of k[t, w] generated by
taiw, i = 1, . . . , n. We consider k[t, w] endowed with the grading defined by
deg(t) = 0, deg(w) = 1.

Let φ = k[X1, . . . , Xn] −→ k[t, w] the degree zero k-algebra morphism
defined by φ(Xi) = taiw. We have Im(φ) = R(A) and the homogeneous piece
of degree s of R(A), i.e. R(A)s, admits the k-basis

tαws, α ∈ sA.(1)

From this fact we get:

Proposition 2.3. [8, Sect. 2] For all s ≥ 0 it holds HFR(A)(s) = |sA|.
In the following result a system of generators of Ker(φ) is computed:

Proposition 2.4. [4, Proposizione 2.2], [8, Proposition 6.4] The kernel of φ
is generated by the binomials Xα − Xβ, α, β ∈ N

n, such that |α| = |β| and
|α|A = |β|A.

Next, we link R(A) with a suitable monomial projective curve.

Definition 2.5. Given a set A = {a1 = 0, a2, . . . , an} such that a1 < · · · < an

and gcd(a2, . . . , an) = 1 we consider the monomial curve CA of Pn−1
k defined

by the Kernel of

ψ k[X1, . . . , Xn] −→ k[u, v]
Xi 
→ uan−aivai

If we consider the standard grading of k[u, v] we get that Ker(ψ) = IA

is a homogeneous ideal of k[X1, . . . , Xn]. We denote by k[CA] := k[X1, . . . ,
Xn]/Ker(φ) the homogeneous coordinate ring of CA. We write HFCA

= HFA

and HPCA
= HPA.

Proposition 2.6. For all set A = {a1 = 0, a2, . . . , an} we have that Ker(φ) =
IA. Hence R(A) ∼= k[CA] as graded k-algebras.

Proof. We first prove that Ker(φ) ⊂ IA. Let’s consider a binomial Xα − Xβ ,
α, β ∈ N

n, with |α| = |β| and |α|A = |β|A. Then

ψ(Xα − Xβ) = uan|α|−|α|Av|α|A − uan|β|−|β|Av|β|A = 0,

by Proposition 2.4 we get that Ker(φ) ⊂ Ker(ψ) = IA.



177 Page 4 of 11 J. Elias MJOM

Next, we prove that IA ⊂ Ker(φ). Let F ∈ IA be a polynomial, so

F (uan , uan−a2va2 , . . . , uan−an−1van−1 , van) = 0.

If Xα, α ∈ N
n, is a monomial of F then

Xα(uan , uan−a2va2 , . . . , uan−an−1van−1 , van) = uan|α|−|α|Av|α|A

Hence we may assume that F is a homogeneous polynomial

F =
d∑

i=1

λiX
αi

such that |αi|A = c, an|αi| = c + d and λi ∈ k \ {0}.
Since F (uan , uan−a2va2 , . . . , uan−an−1van−1 , van) = 0 we deduce that

∑d
i=1 λi = 0, so

F =
d−1∑

i=1

λi(Xαi − Xαd) ∈ Ker(φ).

Remark 2.7. We write BA = k[CA]
X1k[CA] , notice that BA is a graded algebra of

dimension one since the coset of X1 is a non-zero divisor of k[CA]; BA is
the homogeneous coordinate ring of the hyperplane section of CA defined by
X1 = 0. Both algebras k[CA] and BA are standard algebras, i.e. generated by
their homogeneous pieces of degree one, i.e. k[CA]1 and (BA)1, respectively.
In general BA is non Cohen–Macaulay as the classic example of Macaulay
shows, see Example 4.8.

Example 2.8. Let us consider the set A = {0, 2, 4, 5, 7}. The associated mono-
mial curve CA is defined by the parameterization (u, v) 
→ (u7, u5v2, u3v4, u2v5,
v7). Then the defining ideal of CA is minimally generated by x2

2−x1x3, x2x4−
x1x5, x3x4 −x2x5, x2x

2
3 −x1x

2
4, x

3
3 −x1x4x5, x

3
4 −x2

3x5, [6]. The Hilbert func-
tion of CA is HFA = {1, 5, 12, 19, 26, 33, . . .} and the Hilbert polynomial
HPA(s) = 7s − 2.

3. Sumsets and Monomial Projective Curves

We first recall some well known results on curves applied to the projective
curve CA, [13]. The monomial projective curve CA is rational with two eventu-
ally singular points P1 = (1, 0, . . . , 0), P2 = (0, . . . , 0, 1) ∈ P

n−1
k . In the affine

open neighborhood X1 = 1 of P1 the curve CA is defined by the parameteri-
zation v 
→ (va2 , . . . , van); and in the open affine neighborhood Xn = 1 of P2

the curve is defined by the parameterization u 
→ (uan , uan−a2 , . . . , uan−an−1).
The point P1 is non-singular iff a2 = 1 and P2 is non-singular iff an−an−1 = 1.

We denote by pa(CA) the arithmetic genus of CA, i.e.,

HPA(0) = 1 − pa(CA).

Since CA is rational its geometric genus is zero and

pa(CA) =
∑

P∈Sing(CA)

δ(CA, P ),
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where δ(CA, P ) is the singularity order of P ∈ Sing(CA), i.e.

δ(CA, P ) = dimk
OCA,P

OCA,P

where the over-line stands for the integral closure of OCA,P in its field of
fractions. Summarizing, we get

HPA(0) = 1 − δ(CA, P1) − δ(CA, P2).

Since CA is a monomial curve in an affine neighbourhood of P1 (resp. P2) we
have

δ(CA, P1) = Card(N \ 〈a2, . . . , an〉)
and

δ(CA, P2) = Card(N \ 〈an − an−1, . . . , an − a2, an〉).
We know that the Hilbert polynomial HPA(s) and the Hilbert function

HFA(s) agree for s � 0. The first integer s0 such that HFA(s) = HPA(s) for
all s ≥ s0 is called the regularity of the Hilbert function and it is denoted by
r(CA).

The Castelnuovo–Mumford regularity reg(CA) of CA, see [7], for mono-
mial projective curves is upper bounded in terms of the set A. From [19,
Proposition 5.5], see also [14],

reg(CA) ≤ ρ(A) := 1 + Max{(ai − ai−1) + (aj − aj−1); 2 ≤ i < j ≤ n}
since r(CA) ≤ reg(CA) we get that HFA(s) = HPA(s) for all s ≥ ρ(A).

Notice that ρA ≤ an−n+3. This inequality can be deduced from the up-
per bound of the Castelnuovo–Mumford regularity conjectured by Eisenbud
and Goto and proved by Gruson–Lazarsfeld–Peskine in the case of smooth
curves, [12]. If CA is non-singular then we have a better upper bound of the
Castelnuovo–Mumford regularity, [14, Theorem 2.7],

reg(CA) ≤ 1 + Max{(ai − ai−1); 2 ≤ i < j ≤ n}.

The following result describes the asymptotic behaviour of |sA|, see
[11,16,23].

Proposition 3.1. Given a set A = {a1 = 0, a2, . . . , an} of integers such that
a0 < a1 < · · · < an with gcd(a2,
. . . , an) = 1 it holds

|sA| = HFA(s) = san + 1 − δ(CA, P1) − δ(CA, P2)

for all s ≥ ρ(A).

Proof. We know that CA is a degree an projective curve, so

HPA(s) = san + HPA(0) = san + 1 − δ(CA, P1) − δ(CA, P2).

Since HFA(s) = HPA(s) for all s ≥ ρ(A) and we know that |sA| = HFA(s) for
all s ≥ 0, we get the claim.

Corollary 3.2. BA is a one-dimensional standard graded algebra of multiplic-
ity an.
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Proof. Since X1 is a non-zero divisor of k[CA], Remark 2.7, we get the claim
from the last proposition.

The often called fundamental result of additive combinatorics claims:

Proposition 3.3. [22, Theorem 1.1] Given a set A = {a1 = 0, a2, . . . , an} of
integers such that a0 < a1 < · · · < an with gcd(a2, . . . , an) = 1, there exists a
positive integer σ, non-negative integers c1, c2 and finite sets C1 ⊂ [0, c1 − 2]
and C2 ⊂ [0, c2 − 2] such that

sA = C1 � [c1, san − c2] � ({san} − C2)

for all s ≥ σ.

Notice that from the above identity of sets we deduce

|sA| = ans + 1 − (c1 − |C1| + c2 − |C2|)
for s ≥ σ. From Proposition 3.1 we get that

δ(CA, P1) + δ(CA, P2) = c1 − |C1| + c2 − |C2|.
Let Γ1 be the semigroup generated by a1, . . . , an and let Γ2 be the

semigroup generated by an − an−1, . . . , an − a2, an. Notice that Γi is the
semigroup of the curve singularity germ (CA, Pi), i = 1, 2.

Next, we determine the set Ci and the integer ci, i = 1, 2, in terms of
the eventual singular points of the projective curve CA. Notice that Ci = ∅
iff Pi is a non-singular point of CA, i = 1, 2.

Proposition 3.4. Following the notations of Proposition 3.3, we have that,
i = 1, 2,

δ(CA, Pi) = ci − |Ci|
ci is the conductor of Γi and Ci = Γi ∩ [0, ci − 2].

Proof. We only have to prove the result for i = 1. Notice that if s ≥
Max{σ, (c1 + c2)/an} then

[c1, c1 + a2] ⊂ sA.

Moreover, since sA ⊂ (s + 1)A, s ≥ 1, we have for all s � 0 that

[c1, c1 + a2] ⊂ sA ∩ [0, c1 + a2] = Γ1 ∩ [0, c1 + a2].

From this we get that c1 is the conductor of Γ1 and that

C1 = Γ1 ∩ [0, c1 − 2].

Example 3.5. We consider the set A = {0, 2, 4, 5, 7} of Example 2.8. The
decomposition of 5A is

5A = {0, 2} � [4, 33] � {35}
so c1 = 4, C1 = {0, 2}, c2 = 2 and C2 = {0}. In this case we have Γ1 =
{0, 2, 4, 5, . . .}, Γ2 = {0, 2, 3, . . .} and δ1 = 2, δ1 = 1.
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4. Rigid Hilbert Polynomials and Additive Inverse Problems

In this section, we link the inverse problems with the rigidity of Hilbert
polynomials and functions, [9,10]. In particular, we will recover several upper
and lower bounds of the function |sA| from some properties of the Hilbert
function of CA.

Definition 4.1. Let H : N −→ N be a numerical function asymptotically
polynomial, i.e. there exists a polynomial p(T ) ∈ Z[T ] such that H(s) = p(s)
for s � 0. Let C be a class of graded k-algebras. We say that p(T ) is a rigid
polynomial for the class C if for all graded k algebra D of C if HPD = p then
HFD = H, see [9].

From Lemma 2.1 (2) we get:

Proposition 4.2. [22, Theorems 1.3] Given a set A = {a1 = 0, a2, . . . , an} of
integers such that a0 < a1 < · · · < an with gcd(a2, . . . , an) = 1, for all s ≥ 0
it holds

s(n − 1) + 1 ≤ |sA| ≤
(

s + n − 1
s

)

.

Proof. From Lemma 2.1 (2) we deduce the left hand inequality. The right
hand inequality follows from Proposition 2.6.

In the next result we get [22, Theorems 1.2, 1.6 and 1.8]; in particular
we prove that p(T ) = (n−1)T +1 is a rigid polynomial for the class of k[CA]
algebras and that the condition |sA| = s(n− 1)+1, for some s ≥ 2, is a rigid
property, i.e., determines the whole Hilbert function, see [10].

Theorem 4.3. [22, Theorems 1.2, 1.6, 1.8] Given a set A = {a1 = 0, a2, . . . , an}
of integers such that a0 < a1 < · · · < an with gcd(a2, . . . , an) = 1, the follow-
ing conditions are equivalent:
(1) |sA| = s(n−1)+1+o(s) for infinitely many s, where o(s) is an arithmetic

function such that lims→∞ o(s) = 0,
(2) |sA| = s(n − 1) + 1 for all s � 0,
(3) |sA| = s(n − 1) + 1 for some s ≥ 2,
(4) A = {0, 1, . . . , n − 1},
(5) |sA| = s(n − 1) + 1 for all s ≥ 0.

Proof. By Proposition 3.1 we get that (1) implies (2). On the other hand, (2)
trivially implies (3).

Assume (3), i.e., |sA| = s(n − 1) + 1 for some s ≥ 2. Notice that

(s − 1)A ∪ {(s − 1)an + a2, . . . , (s − 1)an + an} ⊂ sA

and, since (s − 1)an is the maximum of (s − 1)A, we have

(s − 1)A ∩ {(s − 1)an + a2, . . . , (s − 1)an + an} = ∅.

By Proposition 4.2 we have |(s − 1)A| ≥ (s − 1)(n − 1) + 1, so

(s − 1)A ∪ {(s − 1)an + a2, . . . , (s − 1)an + an} = sA.(2)
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We know that k[CA]s has as k-basis the monomials tαws, α ∈ sA and
X1k[CA]s−1 is generated by tα+a1ws, α ∈ (s − 1)A. By (2) we have that
(s − 1)A + a1 ⊂ (s − 1)A so the k-vector space

(BA)s =
k[CA]s

X1k[CA]s−1

is generated by the cosets of

t(s−1)an+aiws, i = 2, . . . , n.

This fact implies that

Xs−1
n (BA)1 = (BA)s

Since the algebra BA is standard we get, multiplying both sides by (BA)(r−1)(s−1),
that

X(s−1)r
n (BA)1 = (BA)r(s−1)+1

for all r ≥ 1. Since dimk((BA)t) = n−1, for t � 0 we obtain, Proposition 3.2,

n − 1 ≥ dimk(BA)r(s−1)+1 = an

for r � 0. Hence an ≤ n − 1 and we get (4).
The remaining implications are easy computations.

Remark 4.4. The curve CA for A = {0, . . . , n−1} is the rational normal curve
of Pn−1

k , i.e., the curve defined by (u, v) 
→ (un−1, un−2v, . . . , uvn−2, vn−1).

Remark 4.5. From Lemma 2.1 (1) we get for a general set A that |sA| =
s(n − 1) + 1 for all s ≥ 0 if and only if A is a n-term arithmetic progression,
i.e., A = q0 + q1[0, . . . , n − 1] for q0 ∈ N and q1 ∈ N \ {0}.

Next we use a result on additive combinatorics in order to improve an
upper bound of the Castelnuovo–Mumford regularity of rational projective
curves. We first recall the following result of Lev:

Proposition 4.6. [18, Theorem 1] Given A = {a1 = 0, a2, . . . , an} with
gcd(a2, . . . , an) = 1, it holds:

|sA| − |(s − 1)A| ≥ min{an, s(n − 2) + 1}
for all s ≥ 2.

In the following result we improve [1, Theorem 2.7], see also [17], where
an upper bound of the Castelnuovo–Mumford regularity is given for a mono-
mial projective curve CA under the hypothesis that A is an arithmetic se-
quence. We know that

HFBA
(s) = HFA(s) − HFA(s − 1) = |sA| − |(s − 1)A|

so last result shows that the Hilbert function of the one-dimensional graded
algebra BA grows rapidly. This is the key point in the proof of the following
result where we assume that k[CA] is Cohen–Macaulay. See [3,15] for several
criteria implying the Cohen–Macaulayness of k[CA].
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Theorem 4.7. Given A = {a1 = 0, a2, . . . , an} with gcd(a2, . . . , an) = 1. If
the two-dimensional ring k[CA] is Cohen–Macaulay then

reg(k[CA]) ≤ �an − 1
n − 2

�

Proof. We write s0 = �an−1
n−2 �. Since k[CA] is Cohen–Macaulay we have

r(CA) + 1 = reg(k[CA]) and that BA is a one-dimensional Cohen–Macaulay
ring. Hence we have

HFBA
(s) ≤ an

for all s ≥ 1, [21, Chapter XII]. From this inequality and Proposition 4.6, we
get

s(n − 2) + 1 ≤ HFBA
(s) ≤ min

{

an,

(
s + n − 2

s

)}

for s = 1, . . . , s0 − 1; and

HFBA
(s) = an

for s ≥ s0, i.e. r(BA) ≤ s0. Since r(CA) + 1 = r(BA) we get the claim:

reg(k[CA]) = r(CA) + 1 = r(BA) ≤ s0.

Example 4.8. (Macaulay’s example) In this example we consider the example
of a non-singular, non-Cohen–Macaulay monomial projective curve given by
Macaulay, [20]. In this case the set is A = {0, 1, 3, 4}. The monomial curve CA

associated to A is defined by the parameterization (u, v) 
→ (u4, u3v, uv3, v4).
A computation with Singular [6] give us that HFA = {1, 4, 9, 13, 17, 21, . . .}
and HPA(s) = 4s + 1. Since the points P1, P2 are non-singular points of CA,
we deduce last identity from Proposition 3.1 as well.

Example 4.9. We consider a especial case of [17, Case A]. Let us consider
the set A = {0, 7, 8, 9, 10}. From [17, Theorem 2.1] we know that k[CA] is
Cohen–Macaulay and that r(CA) = 5 that agrees with the upper bound
of the Theorem 4.7. The defining ideal of CA is minimally generated by:
x2
3 − x2x4, x3x4 − x2x5, x

2
4 − x3x5, x

4
2 − x1x3x

2
5, x

3
2x3 − x1x4x

2
5, x

3
2x4 − x1x

3
5.

A straight computation shows

HFA = {|sA|, s = 0, 1, . . .} = {1, 5, 12, 22, 32, 42, 52, 62, 72, . . .}
and the Hilbert polynomial of CA is HPA = 10s − 8.
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