Skip to main content
Log in

Multiple Solutions of Quasilinear Schrödinger Equations with Critical Growth Via Penalization Method

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we deal with the quasilinear Schrödinger equation

$$\begin{aligned} -\epsilon ^{2}\Delta u+V(x)u-\epsilon ^2u\Delta (u^2)=h(u)+ u^{22^*-1},\ u>0,\ x\in \mathbb {R}^{N}, \end{aligned}$$

where \(\epsilon >0\) is a small parameter, \(N\ge 3\), V is continuous and h is of subcritical growth. When V satisfies a local condition and h is merely continuous, we obtain the multiplicity and concentration of solutions using the method of Nehari manifold, penalization techniques and Ljusternik–Schnirelmann category theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berestycki, H., Lions, P.L.: Nonlinear scalar field equation I. Existence of a ground state. Arch. Rational Mech. Anal. 82, 313–345 (1983)

    Article  MathSciNet  Google Scholar 

  2. Brüll, L., Lange, H.: Solitary waves for quasilinear Schrödinger equations. Expos. Math. 4, 279–288 (1986)

  3. Cassani, D., DoÓ, J.M., Moameni, A.: Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations, Commun. Pure. Appl. Anal. 9, 281–306 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Cassani, D., Wang, Y.J., Zhang, J.J.: A unified approach to singularly perturbed quasilinear Schrödinger equations. Milan J. Math. 88, 507–534 (2020)

    Article  MathSciNet  Google Scholar 

  5. Chen, X.L., Sudan, R.N.: Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma. Phys. Rev. Lett. 70, 2082–2085 (1993)

    Article  Google Scholar 

  6. Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equation: A dual approach. Nonlinear Anal. 56, 213–226 (2004)

    Article  MathSciNet  Google Scholar 

  7. del Pino, M., Felmer, P.L.: Local mountain pass for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)

    Article  Google Scholar 

  8. DoÓ, J.M., Severo, U.: Solitary waves for a class of quasilinear Schrödinger equations in dimension two. Calc. Var. Partial Differ. Equ. 38, 275–315 (2010)

    Article  Google Scholar 

  9. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  10. Figueiredo, G.M., Santos, J.R., Jr.: Multiplicity and concentration behavior of positive solutions for a Schrödinger-Kirchhoff type problem via penalization method, ESAIM: Contr. Optim. Calc. Var. 20, 389–415 (2014)

    Article  MathSciNet  Google Scholar 

  11. Gloss, E.: Existence and concentration of positive solutions for a quasilinear equation in \(\mathbb{R}^N\). J. Math. Anal. Appl. 371, 465–484 (2010)

    Article  MathSciNet  Google Scholar 

  12. He, X.M., Qian, A.X., Zou, W.M.: Existence and concentration of positive solutions for quasilinear Schrödinger equations with critical growth. Nonlinearity 26, 3137–3168 (2013)

    Article  MathSciNet  Google Scholar 

  13. He, X.M., Zou, W.M.: Multiplicity of concentrating positive solutions for Schrödinger-Poisson equations with critical growth. Nonlinear Anal. 170, 142–170 (2018)

    Article  MathSciNet  Google Scholar 

  14. He, Y., Li, G.B.: Concentrating soliton solutions for quasilinear Schrödinger equations involving critical Sobolev exponents. Discrete Contin. Dyn. Syst. 36, 731–762 (2016)

    Article  MathSciNet  Google Scholar 

  15. He, Y., Li, G.B.: Concentrating solitary waves for a class of singularly perturbed quasilinear Schrödinger equations with a general nonlinearity. Math. Control Relat. Fields 6, 551–593 (2016)

    Article  MathSciNet  Google Scholar 

  16. Kurihara, S.: Large-amplitude quasi-solitons in superfluid films. J. Phys. Soc. Jpn. 50, 3262–3267 (1981)

    Article  Google Scholar 

  17. Lange, H., Poppenberg, M., Teismann, H.: Nash-Moser methods for the solution of quasilinear Schrödinger equations. Comm. Partial Differ. Equ. 24, 1399–1418 (1999)

    Article  Google Scholar 

  18. Liu, J., Wang, Y., Wang, Z.-Q.: Soliton solutions for quasilinear Schrödinger equations II. J. Differ. Equ. 187, 473–493 (2003)

    Article  Google Scholar 

  19. Poppenberg, M., Schmitt, K., Wang, Z.-Q.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 14, 329–344 (2002)

    Article  Google Scholar 

  20. Rabinowitz, P.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  Google Scholar 

  21. Shang, X.D., Zhang, J.H.: Existence and concentration behavior of positive solutions for a quasilinear Schrödinger equation. J. Math. Anal. Appl. 414, 334–356 (2014)

    Article  MathSciNet  Google Scholar 

  22. Elves, A.B.S., Gilberto, F.: V, Quasilinear asymptotically periodic elliptic equations with critical growth. Calc. Var. Partial Differ. Equ. 39, 1–33 (2012)

    MATH  Google Scholar 

  23. Szulkin, A., Weth, T.: The method of Nehari manifold. In: Gao, D.Y., Motreanu, D. (eds.) Handbook of Nonconvex Analysis and Applications, pp. 597–632. International Press, Boston (2010)

    MATH  Google Scholar 

  24. Wang, W.B., Yang, X.Y., Zhao, F.K.: Existence and concentration of ground state solutions for a subcubic quasilinear problem via Pohozaev manifold. J. Math. Anal. Appl. 424, 1471–1490 (2015)

    Article  MathSciNet  Google Scholar 

  25. Wang, Y.J., Zou, W.M.: Bound states to critical quasilinear Schrödinger equations. Nonlinear Differ. Equ. Appl. 19, 19–47 (2012)

    Article  Google Scholar 

  26. Willem, M.: Minimax theorems. Progress nonlinear differential equations, vol. 24. Birkhauser, Basel (1996)

    Google Scholar 

  27. Yang, M.B., Ding, Y.H.: Existence and multiplicity of semiclassical states for a quasilinear Schrödinger equation in \(\mathbb{R}^N\), Commun. Pure. Appl. Anal. 12, 429–449 (2013)

    MATH  Google Scholar 

  28. Yang, M.B., Ding, Y.H.: Existence of semiclassical states for a quasilinear Schrödinger equation with critical exponent in \(\mathbb{R}^N\). Ann. Mat. Pura Appl. 192, 783–804 (2013)

    Article  MathSciNet  Google Scholar 

  29. Zhang, H., Zhang, F.B.: Semiclassical ground states for quasilinear Schrödinger equations with three times growth. J. Math. Anal. Appl. 456, 1129–1149 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the referees for careful reading the manuscript and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by China Postdoctoral Science Foundation (Nos. 2021M691527, 2020M671531), the National Natural Science Foundation of China (No. 11901284), the Natural Science Foundation of Jiangsu Province (Nos. BK20180814, BK20201382), and the Natural Science Fund for Colleges and Universities in Jiangsu Province (No. 18KJB110009)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Du, M. & Zhu, M. Multiple Solutions of Quasilinear Schrödinger Equations with Critical Growth Via Penalization Method. Mediterr. J. Math. 18, 263 (2021). https://doi.org/10.1007/s00009-021-01911-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-021-01911-5

Keywords

Mathematics Subject Classification

Navigation