Skip to main content
Log in

Existence of Solutions for a Non-homogeneous Neumann Problem

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

The aim of this paper is to study the following non-homogeneous Neumann-type problem

$$\begin{aligned} \left\{ \begin{array} {ll} - \mathrm{{div}}(\alpha (\vert \nabla u\vert )\nabla u) + u = u \vert u\vert ^{p - 2}, &{} \quad \mathrm{in } \, B_{1}, \\ \dfrac{\partial u}{\partial \nu } = 0, &{} \quad \mathrm{on } \, \partial B_{1} , \end{array}\right. \end{aligned}$$
(0.1)

where \(B_{1}\) is the unit ball in \(\mathbb {R}^{n}\) and \(p > 2\). We establish the existence of a non-constant, positive, radially non-decreasing weak solution for (0.1), under certain assumptions on \(\alpha \). Our approach relies on the theory of Orlicz spaces combined with a new variational method that allows one to deal with problems beyond the usual locally compactness structure and a variant of Mountain Pass Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Elsevier Ltd., Academic Press (2003)

    MATH  Google Scholar 

  2. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften, vol. 314. Springer, Berlin (1996)

    Book  Google Scholar 

  3. Bonheure, D., Noris, B., Weth, T.: Increasing radial solutions for Neumann problems without growth restrictions. Ann. I. H. Poincaré AN 29, 573–588 (2012)

    Article  MathSciNet  Google Scholar 

  4. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image processing. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)

    Article  MathSciNet  Google Scholar 

  5. Clément, Ph., García-Huidobro, M., Manásevich, R., Schmitt, K.: Mountain pass type solutions for quasilinear elliptic equations. Calc. Var. PDEs. 11(1), 33–62 (2000)

    Article  MathSciNet  Google Scholar 

  6. Clément, Ph., de Pagter, B., Sweers, G., de Thélin, F.: Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces. Mediterr. J. Math. 1, 241–267 (2004)

    Article  MathSciNet  Google Scholar 

  7. Diening, L.: Theorical and numerical results for electrorheological fluids. Ph.D. Thesis, University of Freiburg, Germany (2002)

  8. Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. American Elsevier Publishing Co. Inc, New York (1976)

    MATH  Google Scholar 

  9. Grossi, M., Noris, B.: Positive constrained minimizers for supercritical problems in the ball. Proc. Am. Math. Soc. 140(6), 2141–2154 (2012)

    Article  MathSciNet  Google Scholar 

  10. Halsey, T.C.: Electrorheological fluids. Science 258, 761–766 (1992)

    Article  Google Scholar 

  11. Kuhestani, N., Mahyar, H., Moameni, A.: Multiplicity results for a non-local problem with concave and convex nonlinearties. Nonlinear Anal. 182, 263–279 (2019)

    Article  MathSciNet  Google Scholar 

  12. Kuhestani, N., Moameni, A.: Multiplicity results for elliptic problems with super-critical concave and convex nonlinearties. Calc. Var. Partial Differ. Equ. 57, 54 (2018). https://doi.org/10.1007/s00526-018-1333-y

    Article  MathSciNet  MATH  Google Scholar 

  13. Lamperti, J.: On the isometries of certain function-spaces. Pac. J. Math. 8, 459–466 (1958)

    Article  MathSciNet  Google Scholar 

  14. Mihăilescu, M., Rădulescu, V.: Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces. Ann. Inst. Fourier 58(6), 2087–2111 (2008)

    Article  MathSciNet  Google Scholar 

  15. Mihăilescu, M., Rădulescu, V.: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 462, 2625–2641 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Moameni, A.: Critical point theory on convex subsets with applications in differential equations and analysis. J. Math. Pures Appl. 141, 266–315 (2020)

    Article  MathSciNet  Google Scholar 

  17. Moameni, A.: A variational principle for problems with a hint of convexity. C. R. Math. Acad. Sci. Paris 355(12), 1236–1241 (2017)

    Article  MathSciNet  Google Scholar 

  18. Moameni, A., Salimi, L.: Existence results for a supercritical Neumann problem with a convex-concave non-linearity. Ann. Mat. Pura Appl. 198, 1165–1184 (2019)

    Article  MathSciNet  Google Scholar 

  19. Rajagopal, K.R., Ružička, M.: Mathematical modelling of electrorheological fluids. Cont. Mech. Term. 13, 59–78 (2001)

    Article  Google Scholar 

  20. Ružička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2000)

    Book  Google Scholar 

  21. Serra, E., Tilli, P.: Monotonicity constraints and supercritical Neumann problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(1), 63–74 (2011)

    Article  MathSciNet  Google Scholar 

  22. Szulkin, A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 3(2), 77–109 (1986)

    Article  MathSciNet  Google Scholar 

  23. Zhikov, V.: Averaging of functionals of the calculus of variations and elasticity. Math. USSR-Izvestiya 29, 33–66 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for valuable and useful suggestions and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakimeh Mahyar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouhestani, N., Mahyar, H. Existence of Solutions for a Non-homogeneous Neumann Problem. Mediterr. J. Math. 18, 237 (2021). https://doi.org/10.1007/s00009-021-01897-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-021-01897-0

Keywords

Mathematics Subject Classification

Navigation