Skip to main content
Log in

A Robust Numerical Method for a Singularly Perturbed Fredholm Integro-Differential Equation

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we deal with a fitted second-order homogeneous (non-hybrid) type difference scheme for solving the singularly perturbed linear second-order Fredholm integro-differential equation. The numerical method represents the exponentially fitted scheme on the Shishkin mesh. Numerical example is presented to demonstrate efficiency of proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amiraliyev, G.M., Durmaz, M.E., Kudu, M.: Uniform convergence results for singularly perturbed Fredholm integro-differential equation. J. Math. Anal. 9(6), 55–64 (2018)

    MathSciNet  Google Scholar 

  2. Amiraliyev, G.M., Durmaz, M.E., Kudu, M.: Fitted second order numerical method for a singularly perturbed Fredholm integro-differential equation. Bull. Belg. Math. Soc. Simon Stevin 27(1), 71–88 (2020). https://doi.org/10.36045/bbms/1590199305

    Article  MathSciNet  MATH  Google Scholar 

  3. Amiraliyev, G.M., Mamedov, Y.D.: Difference schemes on the uniform mesh for singularly perturbed pseudo-parabolic equations. Turk. J. Math. 19, 207–222 (1995)

    MATH  Google Scholar 

  4. Amiraliyev, G.M., Yapman, Ö.: On the Volterra delay-integro-differential equation with layer behavior and its nümerical solution. Miskolc Math. Notes 20(1), 75–87 (2019). https://doi.org/10.18514/mmn.2019.2424

    Article  MathSciNet  MATH  Google Scholar 

  5. Amiraliyev, G.M., Yapman, Ö., Kudu, M.: A fitted approximate method for a Volterra delay-integro-differential equation with initial layer. Hacet. J. Math. Stat. 48(5), 1417–1429 (2019). https://doi.org/10.15672/hjms.2018.582

    Article  MathSciNet  Google Scholar 

  6. Amiraliyev, G.M., Yilmaz, B.: Fitted difference method for a singularly perturbed initial value problem. Int. J. Math. Comput. 22, 1–10 (2014)

    MathSciNet  Google Scholar 

  7. Bobodzhanov, A.A., Safonov, V.F.: A generalization of the regularization method to the singularly perturbed integro-differential equations with partial derivatives. Russ. Math. 62(3), 6–17 (2018). https://doi.org/10.3103/s1066369x18030027

    Article  MATH  Google Scholar 

  8. Brunner, H.: Numerical analysis and computational solution of integro-differential equations. In: Dick, J., et al. (eds.) Contemporary Computational Mathematics—A Celebration of the 80th Birthday of Ian Sloan, pp. 205–231. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72456-0-11

    Chapter  Google Scholar 

  9. Cen, Z.: Uniformly convergent second-order difference scheme for a singularly perturbed periodical boundary value problem. Int. J. Comput. Math. 88(1), 196–206 (2011). https://doi.org/10.1080/00207160903370172

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, J., He, M., Huang, Y.: A fast multiscale Galerkin method for solving second order linear Fredholm integro-differential equation with Dirichlet boundary conditions. J. Comput. Appl. Math. 364, 112352 (2020). https://doi.org/10.1016/j.cam.2019.112352

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, J., He, M., Zeng, T.: A multiscale Galerkin method for second-order boundary value problems of Fredholm integro-differential equation II: efficient algorithm for the discrete linear system. J. Vis. Commun. Image R. 58, 112–118 (2019). https://doi.org/10.1016/j.jvcir.2018.11.027

    Article  Google Scholar 

  12. Das, P., Rana, S., Ramos, H.: A perturbation-based approach for solving fractional-order Volterra–Fredholm integro differential equations and its convergence analysis. Int. J. Comput. Math. 97, 1–18 (2019). https://doi.org/10.1080/00207160.2019.1673892

    Article  MathSciNet  Google Scholar 

  13. Doolan, E.R., Miller, J.J.H., Schilders, W.H.A.: Uniform Numerical Methods for Problems with Initial and Boundary Layers. Boole Press, Dublin (1980)

    MATH  Google Scholar 

  14. Dzhumabaev, D.: Computational methods of solving the boundary value problems for the loaded differential and Fredholm integro-differential equations. Math. Methods Appl. Sci. 41, 1439–1462 (2018). https://doi.org/10.1002/mma.4674

    Article  MathSciNet  MATH  Google Scholar 

  15. Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers. Chapman Hall/CRC, New York (2000)

    Book  Google Scholar 

  16. Fathy, M., El-Gamel, M., El-Azab, M.S.: Legendre–Galerkin method for the linear Fredholm integro-differential equations. Appl. Math. Comput. 243, 789–800 (2014). https://doi.org/10.1016/j.amc.2014.06.057

    Article  MathSciNet  MATH  Google Scholar 

  17. Jalilian, R., Tahernezhad, T.: Exponential spline method for approximation solution of Fredholm integro-diferential equation. Int. J. Comput. Math. 97(4), 791–801 (2020). https://doi.org/10.1080/00207160.2019.1586891

    Article  MathSciNet  Google Scholar 

  18. Kadalbajoo, M.K., Gupta, V.: A brief survey on numerical methods for solving singularly perturbed problems. Appl. Math. Comput. 217(8), 3641–3716 (2010). https://doi.org/10.1016/j.amc.2010.09.059

    Article  MathSciNet  MATH  Google Scholar 

  19. Kudu, M., Amirali, I., Amiraliyev, G.M.: A finite-difference method for a singularly perturbed delay integro-differential equation. J. Comput. Appl. Math. 308, 379–390 (2016). https://doi.org/10.1016/j.cam.2016.06.018

    Article  MathSciNet  MATH  Google Scholar 

  20. Kumar, M., Parul, A.: Recent development of computer methods for solving singularly perturbed boundary value problems. Int. J. Differ. Equ. (2011). https://doi.org/10.1155/2011/404276

    Article  MathSciNet  MATH  Google Scholar 

  21. Kythe, P.K., Puri, P.: Computational Methods for Linear Integral Equations. Birkhauser, Boston (2002). https://doi.org/10.1007/978-1-4612-0101-4

    Book  MATH  Google Scholar 

  22. Lackiewicz, M., Rahman, M., Welfert, B.D.: Numerical solution of a Fredholm integro-differential equation modeling \(\theta \)-neural networks. Appl. Numer. Math. 56, 423–432 (2006). https://doi.org/10.1016/j.amc.2007.05.031

    Article  MathSciNet  Google Scholar 

  23. Loh, J.R., Phang, C.: Numerical solution of Fredholm fractional integro-differential equation with right-sided Caputo’s derivative using Bernoulli polynomials operational matrix of fractional derivative. Mediterr. J. Math. 16(2), 1–25 (2019). https://doi.org/10.1007/s00009-019-1300-7

    Article  MathSciNet  MATH  Google Scholar 

  24. Maleknejad, K., Mahmoudi, Y.: Numerical solution of linear Fredholm integral equation by using hybrid Taylor and block-pulse functions. Appl. Math. Comput. 149, 799–806 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems. World Scientific, Singapore (1996)

    Book  Google Scholar 

  26. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1993)

    MATH  Google Scholar 

  27. O’Malley, R.E.: Singular Perturbations Methods for Ordinary Differential Equations. Springer, New York (1991)

    Book  Google Scholar 

  28. Polyanin, A.D., Manzhirov, A.V.: Handbook of Integral Equations. Chapman and Hall/CRC, Boca Raton (2008)

    Book  Google Scholar 

  29. Rama, C., Ekaterina, V.: Integro-differential equations for option prices in exponential Levy models. Finan. Stoch. 9, 299–325 (2005)

    Article  Google Scholar 

  30. Rashed, M.T.: Numerical solution of functional differential integral and integro-differential equations. Appl. Numer. Math. 156, 485–492 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Rohaninasab, N., Maleknejad, K., Ezzati, R.: Numerical solution of high-order Volterra-Fredholm integro-differential equations by using Legendre collocation method. Appl. Math. Comput. 328, 171–188 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Roos, H.G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin (1996)

    Book  Google Scholar 

  33. Samarskii, A.A.: The Theory of Difference Schemes. Marcel Dekker, New York (2001)

    Book  Google Scholar 

  34. Vougalter, V., Volpert, V.: On the existence in the sense of sequences of stationary solutions for some systems of non-Fredholm integro-differential equations. Mediterr. J. Math. 15(5), 205 (2018). https://doi.org/10.1007/s00009-018-1248-z

    Article  MathSciNet  MATH  Google Scholar 

  35. Yapman, Ö., Amiraliyev, G.M., Amirali, I.: Convergence analysis of fitted numerical method for a singularly perturbed nonlinear Volterra integro-differential equation with delay. J. Comput. Appl. Math. 355, 301–309 (2019)

    Article  MathSciNet  Google Scholar 

  36. Yapman, Ö., Amiraliyev, G.M.: A novel second-order fitted computational method for a singularly perturbed Volterra integro-differential equation. Int. J. Comput. Math. 97, 1–12 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Xue, Q., Niu, J., Yu, D., Ran, C.: An improved reproducing kernel method for Fredholm integro-differential type two-point boundary value problems. Int. J. Comput. Math. 95(5), 1015–1023 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammet Enes Durmaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durmaz, M.E., Amiraliyev, G.M. A Robust Numerical Method for a Singularly Perturbed Fredholm Integro-Differential Equation. Mediterr. J. Math. 18, 24 (2021). https://doi.org/10.1007/s00009-020-01693-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01693-2

Keywords

Mathematics Subject Classification

Navigation