Skip to main content
Log in

An \(L^{p}\)-Approach to the Well-Posedness of Transport Equations Associated to a Regular Field: Part II

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

This work represents the continuation of our paper (Arlotti and Lods, in An \(L^{p}\)-approach to the well-posedness of transport equations associated to a regular field—part I. Mediterr J Math. 2018. https://doi.org/10.1007/s00009-019-1425-8). In \(L^{p}\)-spaces \(1< p <\infty \) we investigate well-posedness of transport equations with general external Lipschitz fields and general measures associated to a large variety of boundary conditions modelled by abstract boundary operators H. In particular, a new explicit formula for the corresponding transport semigroup is given. Some applications are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arlotti, L., Lods, B.: Substochastic semigroups for transport equations with conservative boundary conditions. J. Evol. Equ. 5, 485–508 (2005)

    Article  MathSciNet  Google Scholar 

  2. Arlotti, L., Banasiak, J., Lods, B.: A new approach to transport equations associated to a regular field: trace results and well-posedness. Mediterr. J. Math. 6, 367–402 (2009)

    Article  MathSciNet  Google Scholar 

  3. Arlotti, L., Banasiak, J., Lods, B.: On general transport equations with abstract boundary conditions. The case of divergence free force field. Mediterr. J. Math 8, 1–35 (2011)

    Article  MathSciNet  Google Scholar 

  4. Arlotti, L.: Explicit transport semigroup associated to abstract boundary conditions, Discrete Contin. Dyn. Syst. A, Dynamical systems, differential equations and applications. In: 8th AIMS Conference. Suppl. I, pp. 102–111 (2011)

  5. Arlotti, L., Lods, B.: An \(L^{p}\)-approach to the well-posedness of transport equations associated to a regular field–part I. Mediterr. J. Math. (2018). https://doi.org/10.1007/s00009-019-1425-8

    Article  Google Scholar 

  6. Banasiak, J., Arlotti, L.: Perturbations of Positive Semigroups with Applications. Springer, Berlin (2006)

    MATH  Google Scholar 

  7. Banasiak, J., Falkiewicz, A., Namayanja, P.: Semigroup approach to diffusion and transport problems on networks. Semigroup Forum 93, 427–443 (2016)

    Article  MathSciNet  Google Scholar 

  8. Batkai, A., Kramar Fijavž, M., Rhandi, A.: Positive Operator Semigroups. From Finite to Infinite Dimensions. Operator Theory: Advances and Applications, vol. 257. Birkhauser/Springer, Cham (2017)

    Book  Google Scholar 

  9. Boulanouar, M.: On a mathematical model of age-cycle length structured cell population with non-compact boundary conditions. Math. Methods Appl. Sci. 38, 2081–2104 (2015)

    Article  MathSciNet  Google Scholar 

  10. Boulanouar, M.: On a mathematical model of age-cycle length structured cell population with non-compact boundary conditions (II). Math. Methods Appl. Sci. 39, 1855–1876 (2016)

    Article  MathSciNet  Google Scholar 

  11. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 6. Evolution Problems II. Springer, Berlin (2000)

    MATH  Google Scholar 

  12. Engel, K.-J., Kramar Fijavž, M.: Exact and positive controllability of boundary control systems. Netw. Heterog. Media 12, 319–337 (2017)

    Article  MathSciNet  Google Scholar 

  13. Greiner, G.: Perturbing the boundary conditions of a generator. Houston J. Math. 13, 213–229 (1987)

    MathSciNet  MATH  Google Scholar 

  14. Lods, B., Mokhtar-Kharroubi, M.: On the theory of a growing cell population with zero minimum cycle length. J. Math. Anal. Appl. 266, 70–99 (2002)

    Article  MathSciNet  Google Scholar 

  15. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  Google Scholar 

  16. Voigt, J.: Functional Analytic Treatment of the Initial Boundary Value Problem for Collisionless Gases. Habilitationsschrift, München (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Lods.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: On the Family \((U_{k}(t))_{t \geqslant 0}\)

Appendix A: On the Family \((U_{k}(t))_{t \geqslant 0}\)

We prove that the family of operators \((U_{k}(t))_{t \geqslant 0}\) introduced in Definition 3.6 is well defined and satisfies Theorem 3.8. We first need to establish general properties of \({\mathcal {T}}_{\mathrm {max},\,p}\).

1.1 A.1 Additional Properties of \({\mathcal {T}}_{\mathrm {max},\,p}\)

We establish here several results, reminiscent of [4] about how \({\mathcal {T}}_{\mathrm {max},\,p}\) and some strongly continuous family of operators can interplay. We start with the following where we recall that \({\mathscr {D}}_{0}\) has been defined in the beginning of Section 3.

Proposition A.1

Let \((U(t))_{t\geqslant 0}\) be a strongly continuous family of \({\mathscr {B}}(X)\). For any \(f \in X\), set

$$\begin{aligned} I_{t}[f]=\int _{0}^{t}U(s)f\mathrm {d}s, \quad \forall t \geqslant 0. \end{aligned}$$

Assume that

  1. (i)

    For any \(f \in {\mathscr {D}}_{0},\) the mapping \(t \in [0,\infty ) \mapsto U(t)f \in X\) is differentiable with

    $$\begin{aligned} \dfrac{\mathrm {d}}{\mathrm {d}t}U(t)f=U(t){\mathcal {T}}_{\mathrm {max},\,p}f, \quad t \geqslant 0. \end{aligned}$$
  2. (ii)

    For any \(f \in {\mathscr {D}}_{0}\) and any \(t \geqslant 0\), it holds that \(U(t)f \in {\mathscr {D}}({\mathcal {T}}_{\mathrm {max},\,p})\) with \({\mathcal {T}}_{\mathrm {max},\,p}U(t)f=U(t){\mathcal {T}}_{\mathrm {max},\,p}f.\)

Then, the following holds

  1. (1)

    for any \(f \in X\) and \(t >0\), \(I_{t}[f] \in {\mathscr {D}}({\mathcal {T}}_{\mathrm {max},\,p})\) with

    $$\begin{aligned} {\mathcal {T}}_{\mathrm {max},\,p}I_{t}[f]=U(t)f-U(0)f. \end{aligned}$$
  2. (2)

    for any \(f \in {\mathscr {D}}_{0}\) the mapping \(t \in [0,\infty ) \mapsto {\mathsf {B}}^{\pm }U(t)f \in Y_{p}^{\pm }\) is continuous and,

    $$\begin{aligned} {\mathsf {B}}^{\pm }I_{t}[f]=\int _{0}^{t}{\mathsf {B}}^{\pm }U(s)f \mathrm {d}s \quad \forall t >0. \end{aligned}$$

Let now \(f \in X\) be such that \({\mathsf {B}}^{-}I_{t}[f] \in L^p_-\) for all \(t >0\) with \(t \in [0,\infty ) \mapsto {\mathsf {B}}^{-}I_{t}[f] \in L^p_-\text { continuous,}\) then,

$$\begin{aligned} {\mathsf {B}}^{+}I_{t}[f] \in L^p_+\quad \text { and } \quad t \in [0,\infty ) \mapsto {\mathsf {B}}^{+}I_{t}[f] \in L^p_+\text { continuous.} \end{aligned}$$

Proof

Under assumptions \(i)-ii)\), for any \(f \in {\mathscr {D}}_{0}\), since both the mappings \(t \mapsto U(t)f\) and \(t \mapsto {\mathcal {T}}_{\mathrm {max},\,p}U(t)f\) are continuous and \({\mathcal {T}}_{\mathrm {max},\,p}\) is closed one has \(I_{t}[f] \in {\mathscr {D}}({\mathcal {T}}_{\mathrm {max},\,p})\) with

$$\begin{aligned} {\mathcal {T}}_{\mathrm {max},\,p}I_{t}[f]=\int _{0}^{t}{\mathcal {T}}_{\mathrm {max},\,p}U(s)f\mathrm {d}s=\int _{0}^{t}\dfrac{\mathrm {d}}{\mathrm {d}s}U(s)f \mathrm {d}s=U(t)f-U(0)f. \end{aligned}$$

This proves that (1) holds for \(f \in {\mathscr {D}}_{0}\) and, since \({\mathscr {D}}_{0}\) is dense in X, the result holds for any \(f \in X\).

Let us prove (2). Pick \(f \in {\mathscr {D}}_{0}\). Since the mapping \(t \geqslant 0\mapsto U(t)f \in {\mathscr {D}}({\mathcal {T}}_{\mathrm {max},\,p})\) is continuous for the graph norm on \({\mathscr {D}}({\mathcal {T}}_{\mathrm {max},\,p})\) while \({\mathsf {B}}^{\pm }\,:\,{\mathscr {D}}({\mathcal {T}}_{\mathrm {max},\,p}) \mapsto Y_{p}^{\pm }\) is continuous (see [5, Remark 3.4]), the mapping \(t \geqslant 0 \mapsto {\mathsf {B}}^{\pm }U(t)f \in Y_{p}^{\pm }\) is continuous. Moreover, \({\mathsf {B}}^{\pm }I_{t}[f]=\int _{0}^{t}{\mathsf {B}}^{\pm }U(s)f \mathrm {d}s\) still thanks to the continuity on \({\mathscr {D}}({\mathcal {T}}_{\mathrm {max},\,p})\) with the graph norm and point (1).

Let now \(f \in X\) be given such that \({\mathsf {B}}^{-}I_{t}[f] \in L^p_-\) for all \(t >0\) with \(t \geqslant 0 \mapsto {\mathsf {B}}^{-}I_{t}[f] \in L^p_-\) continuous. For all \(t \geqslant 0,\) \(h \geqslant -t\), denote now

$$\begin{aligned} I_{t,t+h}[f]=\int _{t}^{t+h}U(s)f\mathrm {d}s=I_{t+h}[f]-I_{t}[f]. \end{aligned}$$

Since \(I_{t}[f] \in {\mathscr {D}}({\mathcal {T}}_{\mathrm {max},\,p})\) and \({\mathsf {B}}^{-}I_{t}[f] \in L^p_-\), one has clearly \(I_{t,t+h}[f] \in {\mathscr {D}}({\mathcal {T}}_{\mathrm {max},\,p})\) and \({\mathsf {B}}^{-}I_{t,t+h}[f] \in L^p_-\) and Green’s formula (see [5, Equation (2.12)]) yields

$$\begin{aligned} \Vert {\mathsf {B}}^{+}I_{t,t+h}[f]\Vert _{L^p_+}^{p}= & {} \Vert {\mathsf {B}}^{-}I_{t,t+h}[f]\Vert _{L^p_-}^{p}\\&-p\int _{\mathbf {\Omega }}\left| I_{t,t+h}[f]\right| ^{p-1}\mathrm {sign}(I_{t,t+h}[f]){\mathcal {T}}_{\mathrm {max},\,p}I_{t,t+h}[f]\mathrm {d}\mu \\\leqslant & {} \Vert {\mathsf {B}}^{-}I_{t,t+h}[f]\Vert _{L^p_-}^{p}+p\Vert I_{t,t+h}[f]\Vert _{p}^{p-1}\,\Vert {\mathcal {T}}_{\mathrm {max},\,p}I_{t,t+h}[f]\Vert _{p}. \end{aligned}$$

Since \({\mathcal {T}}_{\mathrm {max},\,p}I_{t,t+h}[f]=U(t+h)f-U(t)f\), one gets

$$\begin{aligned} \Vert {\mathsf {B}}^{+}\left( I_{t+h}[f]-I_{t}[f]\right) \Vert _{L^p_+}^{p}\leqslant & {} \Vert {\mathsf {B}}^{-}\left( I_{t+h}[f]-I_{t}[f]\right) \Vert _{L^p_-}^{p}\nonumber \\&+p\Vert I_{t+h}[f]-I_{t}[f]\Vert _{p}^{p-1}\,\Vert U(t+h)f-U(t)f\Vert _{p}.\nonumber \\ \end{aligned}$$
(A.1)

The continuity of \(s \geqslant 0\mapsto U(s)f \in X\) together with the one of \(s \geqslant 0 \mapsto {\mathsf {B}}^{-}I_{s}[f] \in L^p_-\) gives then that

$$\begin{aligned} \lim _{h \rightarrow 0}\Vert {\mathsf {B}}^{+}\left( I_{t+h}[f]-I_{t}[f]\right) \Vert _{L^p_+}=0 \end{aligned}$$

i.e. \(t \geqslant 0 \mapsto {\mathsf {B}}^{+}I_{t}[f] \in L^p_+\) is continuous. \(\square \)

We can complement the above with the following whose proof is exactly as that of [4, Proposition 3] and is omitted here:

Proposition A.2

Let \((U(t))_{t\geqslant 0}\) be a strongly continuous family of \({\mathscr {B}}(X)\) satisfying the following, for any \(f \in {\mathscr {D}}_{0}\):

  1. (i)

    For any \(t \geqslant 0\),

    $$\begin{aligned}{}[U(t)f]({\mathbf {x}})=0 \quad \forall {\mathbf {x}}\in \mathbf {\Omega }\text { such that } \tau _{-}({\mathbf {x}}) \geqslant t. \end{aligned}$$
  2. (ii)

    For any \({\mathbf {y}}\in \Gamma _{-}\), \(t >0\), \(0< r< s < \tau _{+}({\mathbf {y}})\), it holds

    $$\begin{aligned} \left[ U(t)f\right] (\Phi ({\mathbf {y}},s))=\left[ U(t-s+r)f\right] (\Phi ({\mathbf {y}},r)). \end{aligned}$$
  3. (iii)

    the mapping \(t \geqslant 0 \mapsto U(t)f \in X\) is differentiable with \(\frac{\mathrm {d}}{\mathrm {d}t}U(t)f=U(t){\mathcal {T}}_{\mathrm {max},\,p}f\) for any \(t \geqslant 0.\)

Then, the following properties hold

  1. (1)

    For any \(f \in X\) and any \(t \geqslant 0\) and \(\mu _{-}\)-a.e. \({\mathbf {y}}\in \Gamma _{-}\), given \(0< s_{1}< s_{2} < \tau _{+}({\mathbf {y}})\), there exists \(0< r < s_{1}\) such that

    $$\begin{aligned} \int _{s_{1}}^{s_{2}}\left[ U(t)f\right] (\Phi ({\mathbf {y}},s))\mathrm {d}s=\int _{t-s_{2}+r}^{t-s_{1}+r}\left[ U(\tau )f\right] (\Phi ({\mathbf {y}},r))\mathrm {d}\tau . \end{aligned}$$
  2. (2)

    For any \(f \in {\mathscr {D}}_{0}\) and \(t \geqslant 0\), one has \(U(t)f \in {\mathscr {D}}({\mathcal {T}}_{\mathrm {max},\,p})\) with \({\mathcal {T}}_{\mathrm {max},\,p}U(t)f=U(t){\mathcal {T}}_{\mathrm {max},\,p}f.\)

1.2 A.2 Proof of Theorem 3.8

We now come to the proof of Theorem 3.8 which will consist of showing that the family of operators \((U_{k}(t))_{t \geqslant 0}\) introduced in Definition 3.6 is well defined and satisfies the properties listed in Theorem 3.8. The proof is made by induction and we start with a series of Lemmas (one for each of the above properties in Theorem 3.8) showing that \(U_{1}(t)\) enjoys all the listed properties.

As already mentioned, the fact that the mapping

$$\begin{aligned} \Phi \,:\,\{({\mathbf {y}},s) \in \Gamma _{-}\times (0,\infty )\;;\;0< s < \tau _{+}({\mathbf {y}}) \} \rightarrow \mathbf {\Omega }_{-} \end{aligned}$$

is a measure isomorphism, for any \(f \in {\mathscr {D}}_{0}\) and \(t >0\), the function \(U_{1}(t)f\) is well defined and measurable on \(\mathbf {\Omega }\). Moreover, using [5, Proposition 2.2] and Fubini’s Theorem:

$$\begin{aligned} \begin{aligned} \Vert U_{1}(t)f\Vert _{p}^{p}&=\int _{\Gamma _{-}}\mathrm {d}\mu _{-}({\mathbf {y}})\int _{0}^{\tau _{+}({\mathbf {y}})}\left| [U_{1}(t)f](\Phi ({\mathbf {y}},s))\right| ^{p}\mathrm {d}s\\&=\int _{\Gamma _{-}}\mathrm {d}\mu _{-}({\mathbf {y}})\int _{0}^{\min (t,\tau _{+}({\mathbf {y}}))}\left| \left[ H({\mathsf {B}}^{+}U_{0}(t-s)f)\right] ({\mathbf {y}})\right| ^{p}\mathrm {d}s\\&\leqslant \int _{0}^{t} \Vert H({\mathsf {B}}^{+}U_{0}(t-s)f)\Vert _{L^p_-}^{p}\mathrm {d}s. \end{aligned} \end{aligned}$$

Therefore,

$$\begin{aligned} \Vert U_{1}(t)f\Vert _{p}^{p} \leqslant {\left| \left| \left| H \right| \right| \right| }^{p}\int _{0}^{t}\Vert {\mathsf {B}}^{+}U_{0}(t-s)f\Vert _{L^p_+}^{p}\mathrm {d}s={\left| \left| \left| H \right| \right| \right| }^{p}\left( \Vert f\Vert _{p}^{p}-\Vert U_{0}(t)f\Vert _{p}^{p}\right) \end{aligned}$$

thanks to Proposition 3.5. Therefore \(\Vert U_{1}(t)f\Vert _{p} \leqslant {\left| \left| \left| H \right| \right| \right| }\,\Vert f\Vert _{p}\) for all \(f \in {\mathscr {D}}_{0}\) with moreover

$$\begin{aligned} \lim _{t\rightarrow 0^{+}}\Vert U_{1}(t)f\Vert _{p}=0 \quad \forall f \in {\mathscr {D}}_{0}.\end{aligned}$$
(A.2)

Since \({\mathscr {D}}_{0}\) is dense in X, this allows to define a unique extension operator, still denoted by \(U_{1}(t) \in {\mathscr {B}}(X)\) with

$$\begin{aligned} \Vert U_{1}(t)\Vert _{{\mathscr {B}}(X)} \leqslant {\left| \left| \left| H \right| \right| \right| }, \quad \forall t \geqslant 0. \end{aligned}$$

Now, one has the following

Lemma A.3

The family \((U_{1}(t))_{t\geqslant 0}\) is strongly continuous on X.

Proof

Let \(t >0\) be fixed. Set \(\mathbf {\Omega }_{t}=\{{\mathbf {x}}\in \mathbf {\Omega }_{-}\,;\;\tau _{-}({\mathbf {x}}) \leqslant t \}.\) One has \([U_{1}(t)f]({\mathbf {x}})=0\) for any \({\mathbf {x}}\in \mathbf {\Omega }{{\setminus }} \mathbf {\Omega }_{t}\) and any \(f \in X.\) Let us fix \(f \in {\mathscr {D}}_{0}\) and \(h >0.\) One has

$$\begin{aligned} \Vert U_{1}(t+h)f-U_{1}(t)f\Vert _{p}^{p}= & {} \int _{\mathbf {\Omega }_{t}}\left| U_{1}(t+h)f-U_{1}(t)f\right| ^{p}\mathrm {d}\mu \nonumber \\&+ \int _{\mathbf {\Omega }_{t+h}{\setminus }\mathbf {\Omega }_{t}}|U_{1}(t+h)f|^{p}\mathrm {d}\mu . \end{aligned}$$
(A.3)

Now,

$$\begin{aligned}&\int _{\mathbf {\Omega }_{t}}\left| U_{1}(t+h)f-U_{1}(t)f\right| ^{p}\mathrm {d}\mu \\&\quad =\int _{ \Gamma _{-}}\mathrm {d}\mu _{-}({\mathbf {y}})\int _{0}^{\tau _{+}({\mathbf {y}})}\left| \left[ U_{1}(t+h)f-U_{1}(t)f\right] (\Phi ({\mathbf {y}},s))\right| ^{p}\mathrm {d}s \end{aligned}$$

and, repeating the reasoning before Lemma A.3 one gets

$$\begin{aligned} \int _{\mathbf {\Omega }_{t}}\left| U_{1}(t+h)f-U_{1}(t)f\right| ^{p}\mathrm {d}\mu \leqslant {\left| \left| \left| H \right| \right| \right| }^{p}\int _{0}^{t}\Vert {\mathsf {B}}^{+}\left( U_{0}(s+h)f-U_{0}(s)f\right) \Vert _{L^p_+}^{p}\mathrm {d}s. \end{aligned}$$

Since \(U_{0}(s+h)f-U_{0}(s)f=U_{0}(s)\left( U_{0}(h)f-f\right) \) one gets from Proposition 3.5 that

$$\begin{aligned} \int _{\mathbf {\Omega }_{t}}\left| U_{1}(t+h)f-U_{1}(t)f\right| ^{p}\mathrm {d}\mu \leqslant {\left| \left| \left| H \right| \right| \right| }^{p}\left( \Vert U_{0}(h)f-f\Vert _{p}^{p}-\Vert U_{0}(t)\left( U_{0}(h)f-f\right) \Vert _{p}^{p}\right) . \end{aligned}$$

This proves that

$$\begin{aligned} \lim _{h\rightarrow 0^{+}}\int _{\mathbf {\Omega }_{t}}\left| U_{1}(t+h)f-U_{1}(t)f\right| ^{p}\mathrm {d}\mu =0. \end{aligned}$$

Let us investigate the second integral in (A.3). One first notices that, given \({\mathbf {x}}=\Phi ({\mathbf {y}},s)\) with \({\mathbf {y}}\in \Gamma _{-}\), \(0< s < \min (t,\tau _{+}({\mathbf {y}}))\), it holds

$$\begin{aligned} \begin{aligned} \left[ U_{0}(t)U_{1}(h)f\right] ({\mathbf {x}})&=\chi _{\{t< \tau _{-}({\mathbf {x}})\}}\left[ U_{1}(h)f\right] (\Phi ({\mathbf {x}},-t))\\&=\chi _{(t,\infty )}(s)\,\left[ U_{1}(h)f\right] (\Phi ({\mathbf {y}},s-t))\\&=\chi _{(t,t+h]}(s)\left[ H\left( {\mathsf {B}}^{+}U_{0}(t+h-s)f\right) \right] ({\mathbf {y}})\\&=\chi _{(t,t+h]}(s)\left[ U_{1}(t+h)f\right] (\Phi ({\mathbf {y}},s))\\&=\chi _{\{t < \tau _{-}({\mathbf {x}})\}}\left[ U_{1}(t+h)f\right] ({\mathbf {x}}). \end{aligned} \end{aligned}$$
(A.4)

Therefore

$$\begin{aligned} \int _{\mathbf {\Omega }_{t+h}{\setminus } \mathbf {\Omega }_{t}}|U_{1}(t+h)f|^{p}\mathrm {d}\mu =\Vert U_{0}(t)U_{1}(h)f\Vert _{p}^{p} \end{aligned}$$

and, since \((U_{0}(t))_{t\geqslant 0}\) is a contraction semigroup, we get

$$\begin{aligned} \int _{\mathbf {\Omega }_{t+h}{\setminus } \mathbf {\Omega }_{t}}|U_{1}(t+h)f|^{p}\mathrm {d}\mu \leqslant \Vert U_{1}(h)f\Vert _{p}^{p}. \end{aligned}$$

Using (A.2), we get \(\lim _{h\rightarrow 0^{+}}\int _{\mathbf {\Omega }_{t+h}{\setminus } \mathbf {\Omega }_{t}}|U_{1}(t+h)f|^{p}\mathrm {d}\mu =0\) and we obtain finally that \(\lim _{h \rightarrow 0^{+}}\Vert U_{1}(t+h)f-U_{1}(t)f\Vert _{p}^{p}=0.\) One argues in a similar way for negative h and gets

$$\begin{aligned} \lim _{h \rightarrow 0}\Vert U_{1}(t+h)f-U_{1}(t)f\Vert _{p}=0, \quad \forall f \in {\mathscr {D}}_{0}. \end{aligned}$$

Since \({\mathscr {D}}_{0}\) is dense in X and \(\Vert U_{1}(t)\Vert _{{\mathscr {B}}(X)} \leqslant {\left| \left| \left| H \right| \right| \right| }\) we deduce that above limit vanishes for all \(f \in X\). This proves the result. \(\square \)

One has also the following

Lemma A.4

For all \(t \geqslant 0,\) \(h \geqslant 0\) and \(f \in X\) it holds

$$\begin{aligned} U_{1}(t+h)f=U_{0}(t)U_{1}(h)f+U_{1}(t)U_{0}(h)f. \end{aligned}$$

Proof

It is clearly enough to consider \(t >0\), \(h >0\) since \(U_{1}(0)f=0\) while \(U_{0}(0)\) is the identity operator. Notice that, for any \(f \in {\mathscr {D}}_{0}\) and any \(0 \leqslant t_{1} \leqslant t_{2}\), for \({\mathbf {x}}=\Phi ({\mathbf {y}},s) \in \mathbf {\Omega }_{t_{1}}\) we have

$$\begin{aligned} \int _{t_1}^{t_2}[U_1(\tau )f]({\mathbf {x}})\mathrm {d}\tau =\left[ H{\mathsf {B}}^{+}\int _{t_{1}-s}^{t_{2}-s}U_0(\tau )f\mathrm {d}\tau \right] ({\mathbf {y}}). \end{aligned}$$

Now, given \(f \in X\) and \(0 \leqslant t_{1} \leqslant t_{2}\) the above formula is true for almost every \({\mathbf {x}}=\Phi ({\mathbf {y}},s) \in \mathbf {\Omega }_{t_{1}}\) by a density argument. Therefore, for almost every \({\mathbf {x}}=\Phi ({\mathbf {y}},s) \in \mathbf {\Omega }_{t}\) and any \(\delta >0\) it holds

$$\begin{aligned} \int _{t}^{t+\delta }[U_1(r+h)f]({\mathbf {x}})\mathrm {d}r= & {} \left[ H{\mathsf {B}}^+\int _{t-s}^{t+\delta -s}U_0(r+h)f\mathrm {d}r\right] ({\mathbf {y}})\\= & {} \left[ H{\mathsf {B}}^+\int _{t-s}^{t+\delta -s}U_0(r)U_0(h)f\mathrm {d}r\right] ({\mathbf {y}}) \end{aligned}$$

so that, using the definition of \(U_{1}(r)\) again

$$\begin{aligned} \int _{t}^{t+\delta }[U_1(r+h)f]({\mathbf {x}})\mathrm {d}r=\int _{t}^{t+\delta }[U_1(r)U_0(h)f]({\mathbf {x}})\mathrm {d}r \quad \forall \delta >0 \end{aligned}$$

from which we deduce that \(U_1(t+h)f({\mathbf {x}})=U_1(t)U_0(h)f({\mathbf {x}})\) for almost any \({\mathbf {x}}\in \mathbf {\Omega }_{t}.\)With the notations of the previous proof, one has from (A.4) that

$$\begin{aligned} U_{1}(t+h)f({\mathbf {x}})=\left[ U_{0}(t)U_{1}(h)f\right] ({\mathbf {x}}) \quad \text { for a.e. } {\mathbf {x}}\in \mathbf {\Omega }_{t+h}{\setminus } \mathbf {\Omega }_{t} \end{aligned}$$

This proves the result, since \(U_{1}(t)f\) vanishes on \(\mathbf {\Omega }_{t+h}{{\setminus }}\mathbf {\Omega }_{t}\) while \(U_{0}(t)f\) vanishes on \(\mathbf {\Omega }_{t}.\) \(\square \)

One has now the following

Lemma A.5

For any \(f \in {\mathscr {D}}_{0}\), the mapping \(t \geqslant 0 \mapsto U_{1}(t)f \in X\) is differentiable with \(\frac{\mathrm {d}}{\mathrm {d}t}U_{1}(t)f=U_{1}(t){\mathcal {T}}_{\mathrm {max},\,p}f\) for any \(t \geqslant 0.\)

Proof

In virtue of the previous Lemma, it is enough to prove that \(t \geqslant 0 \mapsto U_{1}(t)f \in X\) is differentiable at \(t=0\) with

$$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d}t}U_{1}(t)f\vert _{t=0}=U_{1}(0){\mathcal {T}}_{\mathrm {max},\,p}f=0. \end{aligned}$$

Consider \(t >0\). One has

$$\begin{aligned} \Vert U_{1}(t)f\Vert _{p}^{p}\leqslant {\left| \left| \left| H \right| \right| \right| }^{p}\,\int _{0}^{t}\Vert {\mathsf {B}}^{+}U_{0}(s)f\Vert _{L^p_+}^{p}\mathrm {d}s. \end{aligned}$$

Now, since \(f \in {\mathscr {D}}({\mathcal {T}}_{0,\,p})\), one has from (3.9)

$$\begin{aligned} \int _{0}^{t}\Vert {\mathsf {B}}^{+}U_{0}(s)f\Vert _{L^p_+}^{p}\mathrm {d}s \leqslant \frac{t^{p}}{p}\int _{0}^{t}\left( \int _{\Gamma _{+}}\left| [{\mathcal {T}}_{\mathrm {max},\,p}f](\Phi ({\mathbf {z}},-s))\right| ^{p} \chi _{\{s < \tau _{-}({\mathbf {z}})\}}\mathrm {d}\mu _{+}({\mathbf {z}})\right) \mathrm {d}s \end{aligned}$$

so that

$$\begin{aligned} \frac{\Vert U_{1}(t)f\Vert _{p}^{p}}{t^{p}} \leqslant \frac{ {\left| \left| \left| H \right| \right| \right| }^{p}}{p}\int _{0}^{t}\left( \int _{\Gamma _{+}}\left| [{\mathcal {T}}_{\mathrm {max},\,p}f](\Phi ({\mathbf {z}},-s))\right| ^{p} \chi _{\{s < \tau _{-}({\mathbf {z}})\}}\mathrm {d}\mu _{+}({\mathbf {z}})\right) \mathrm {d}s.\nonumber \\ \end{aligned}$$
(A.5)

Using [5, Proposition 2.2], one has

$$\begin{aligned} \int _{0}^{\infty }\left( \int _{\Gamma _{+}}\left| [{\mathcal {T}}_{\mathrm {max},\,p}f](\Phi ({\mathbf {z}},-s))\right| ^{p} \chi _{\{s< \tau _{-}({\mathbf {z}})\}}\mathrm {d}\mu _{+}({\mathbf {z}})\right) \mathrm {d}s=\Vert {\mathcal {T}}_{\mathrm {max},\,p}f\Vert _{p}^{p} < \infty \end{aligned}$$

so that (A.5) yields

$$\begin{aligned} \lim _{t \rightarrow 0^{+}}\frac{\Vert U_{1}(t)f\Vert _{p}}{t}=0. \end{aligned}$$

This proves the result.\(\square \)

Lemma A.6

For any \(f \in {\mathscr {D}}_{0}\) and any \(t >0\), one has \(U_{1}(t)f \in {\mathscr {D}}({\mathcal {T}}_{\mathrm {max},\,p})\) with \({\mathcal {T}}_{\mathrm {max},\,p}U_{1}(t)f=U_{1}(t){\mathcal {T}}_{\mathrm {max},\,p}f\).

Proof

The proof follows from a simple application of Proposition A.2 where the assumptions (i)–(iii) are met thanks to the previous Lemmas. \(\square \)

Let us now establish the following

Lemma A.7

For any \(f \in X\) and any \(t >0\), one has \({\mathcal {I}}^{1}_{t}[f]:=\int _{0}^{t}U_{1}(s)f \mathrm {d}s \in {\mathscr {D}}({\mathcal {T}}_{\mathrm {max},\,p})\) with

$$\begin{aligned} {\mathcal {T}}_{\mathrm {max},\,p}{\mathcal {I}}^{1}_{t}[f]=U_{1}(t)f, \end{aligned}$$

and \({\mathsf {B}}^{\pm } {\mathcal {I}}_{t}^{1}[f] \mathrm {d}s \in L^{p}_{\pm }\),

$$\begin{aligned} {\mathsf {B}}^{-}{\mathcal {I}}_{t}^{1}[f]=H{\mathsf {B}}^{+}\int _{0}^{t}U_{0}(s)f \mathrm {d}s. \end{aligned}$$
(A.6)

Moreover the mappings \(t \geqslant 0\mapsto {\mathsf {B}}^{\pm } {\mathcal {I}}_{t}^{1}[f] \mathrm {d}s \in L^{p}_{\pm }\) are continuous. Finally, for any \(f \in {\mathscr {D}}_{0}\) and any \(t \geqslant 0\), the traces \({\mathsf {B}}^{\pm }U_{1}(t)f \in L^{p}_{\pm }\) and the mappings \(t \geqslant 0\mapsto {\mathsf {B}}^{\pm }U_{1}(t)f \in L^{p}_{\pm }\) are continuous.

Proof

Thanks to the previous Lemmas, the family \((U_{1}(t))_{t\geqslant 0}\) satisfies assumptions (i)–(ii) of Proposition A.1. One deduces then from the same Proposition (point (1)) that, for any \(f \in X\) and any \(t >0\), \({\mathcal {I}}^{1}_{t}[f] \in {\mathscr {D}}({\mathcal {T}}_{\mathrm {max},\,p})\) with \({\mathcal {T}}_{\mathrm {max},\,p}{\mathcal {I}}_{t}^{1}[f]=U_{1}(t)f-U_{1}(0)f=U_{1}(t)f.\)

To show that \({\mathsf {B}}^{-}{\mathcal {I}}_{t}^{1}[f] \) can be expressed through formula (A.6) we first suppose \(f \in {\mathscr {D}}_{0}\). For such an f both \(U_{0}(t)f \) and \(U_{1}(t)f\) belong to \({\mathscr {D}}({\mathcal {T}}_{\mathrm {max},\,p})\) for any \(t\geqslant 0\) with \({\mathsf {B}}^{-}U_{1}(t)f=H{\mathsf {B}}^{+}U_{0}(t)f \in L^p_-\). Using this equality, the continuity of H and Proposition A.1 (point 2) applied both to \((U_{1}(t))_{t\geqslant 0}\) and \((U_{0}(t))_{t\geqslant 0}\) one gets

$$\begin{aligned} {\mathsf {B}}^{-}{\mathcal {I}}^{1}_{t}[f]= & {} \int _{0}^{t}{\mathsf {B}}^{-}U_{1}(s)f \mathrm {d}s=\int _{0}^{t}H{\mathsf {B}}^{+}U_{0}(s)f\mathrm {d}s\\= & {} H\left( \int _{0}^{t}{\mathsf {B}}^{+}U_{0}(s)f\mathrm {d}s\right) =H{\mathsf {B}}^{+}{\mathcal {I}}_{t}^{0}[f] \end{aligned}$$

i.e., (A.6) for \(f \in {\mathscr {D}}_{0}.\)

Consider now \(f \in X\) and let \((f_{n})_{n} \in {\mathscr {D}}_{0}\) be such that \(\lim _{n}\Vert f_{n}-f\Vert _{p}=0.\) According to Eq. (3.8), the sequence \(({\mathsf {B}}^{+}{\mathcal {I}}_{t}^{0}[f_{n}])_{n}\) converges in \(L^p_+\) towards \({\mathsf {B}}^{+}{\mathcal {I}}_{t}^{0}[f]\). Since (A.6) holds true for \(f_{n}\), and H is continuous, then the sequence \(({\mathsf {B}}^{-}{\mathcal {I}}_{t}^{1}[f_{n}])_{n}\) converges in \(L^p_-\) to \(H{\mathsf {B}}^{+}{\mathcal {I}}_{t}^{0}[f].\) One deduces from this that \({\mathsf {B}}^{-}{\mathcal {I}}_{t}^{1}[f] \in L^p_-\) with (A.6).

Moreover the mapping \(t\geqslant 0 \mapsto {\mathsf {B}}^{-}I_{t}^{1}[f] \in L^p_-\) is continuous since both H and the mapping \(t \geqslant 0\mapsto {\mathsf {B}}^{+}{\mathcal {I}}_{t}^{0}[f] \in L^p_+\) are continuous (see Proposition 3.3). This property and Proposition A.1 imply that \( {\mathsf {B}}^{+}{\mathcal {I}}_{t}^{1}[f] \in L^p_+\) and that the mapping \(t \mapsto {\mathsf {B}}^{+}{\mathcal {I}}_{t}^{1}[f] \in L^p_+\) is continuous too.

Finally observe that, if \(f \in {\mathscr {D}}_{0}\), then \(f \in {\mathscr {D}}({\mathcal {T}}_{\mathrm {max},\,p})\) and for any \(t \geqslant 0\) one has

$$\begin{aligned} {\mathcal {I}}_{t}^{1}\left[ {\mathcal {T}}_{\mathrm {max},\,p}f\right] =U_{1}(t)f. \end{aligned}$$

Thus one can state that for any \(f \in {\mathscr {D}}_{0}\) and any \(t \geqslant 0\), the traces \({\mathsf {B}}^{\pm }U_{1}(t)f \in L^{p}_{\pm }\) and the mappings \(t \geqslant 0\mapsto {\mathsf {B}}^{\pm }U_{1}(t)f \in L^{p}_{\pm }\) are continuous. \(\square \)

Let us now investigate Property (7):

Lemma A.8

One has

$$\begin{aligned} \int _{0}^{t}\Vert {\mathsf {B}}^{+}U_{1}(s)f\Vert _{L^p_+}^{p}\mathrm {d}s \leqslant {\left| \left| \left| H \right| \right| \right| }^{p}\,\int _{0}^{t}\Vert {\mathsf {B}}^{+}U_{0}(s)f\Vert _{L^p_+}^{p}\mathrm {d}s, \quad \forall t \geqslant 0, \forall f \in {\mathscr {D}}_{0}. \end{aligned}$$

Proof

Given \(f \in {\mathscr {D}}_{0}\), for any \(s >0\) and \(\mu _{+}\)-a.e. \({\mathbf {z}}\in \Gamma _{+}\):

$$\begin{aligned} \left[ {\mathsf {B}}^{+}U_{1}(s)f\right] ({\mathbf {z}})=\left[ H\left( {\mathsf {B}}^{+}U_{0}(s-\tau _{-}({\mathbf {z}}))f\right) \right] (\Phi ({\mathbf {z}},-\tau _{-}({\mathbf {z}}))\chi _{(0,s)}(\tau _{-}({\mathbf {z}})) \end{aligned}$$

Thus,

$$\begin{aligned} J:= & {} \int _{0}^{t}\Vert {\mathsf {B}}^{+}U_{1}(s)f\Vert _{L^p_+}^{p}\mathrm {d}s\\= & {} \int _{0}^{t}\left( \int _{\Gamma _{+}}\left| \left[ H\left( {\mathsf {B}}^{+}U_{0}(s-\tau _{-}({\mathbf {z}}))\right) f\right] (\Phi ({\mathbf {z}},-\tau _{-}({\mathbf {z}})))\right| ^{p}\chi _{(0,s)}(\tau _{-}({\mathbf {z}}))\mathrm {d}\mu _{+}({\mathbf {z}})\right) \mathrm {d}s. \end{aligned}$$

Now, using Fubini’s Theorem and, for a given \({\mathbf {z}}\in \Gamma _{+}\), the change of variable \(s \mapsto s-\tau _{-}({\mathbf {z}})\), we get

$$\begin{aligned} J=\int _{\Gamma _{+}}\left( \int _{0}^{\max (0,t-\tau _{-}({\mathbf {z}}))}\left| \left[ H\left( {\mathsf {B}}^{+}U_{0}(s)\right) f\right] (\Phi ({\mathbf {z}},-\tau _{-}({\mathbf {z}})))\right| ^{p}\mathrm {d}s\right) \mathrm {d}\mu _{+}({\mathbf {z}}). \end{aligned}$$

Using Fubini’s Theorem again

$$\begin{aligned} \begin{aligned} J&\leqslant \int _{0}^{t}\left( \int _{\Gamma _{+}}\left| \left[ H \left( {\mathsf {B}}^{+}U_{0}(s)\right) f\right] (\Phi ({\mathbf {z}},-\tau _{-}({\mathbf {z}})))\right| ^{p}\mathrm {d}\mu _{+}({\mathbf {z}})\right) \mathrm {d}s\\&\leqslant \int _{0}^{t}\left( \int _{\Gamma _{-}}\left| \left[ H \left( {\mathsf {B}}^{+}U_{0}(s)\right) f\right] ({\mathbf {y}})\right| ^{p}\mathrm {d}\mu _{-}({\mathbf {y}})\right) \mathrm {d}s\end{aligned} \end{aligned}$$

where we used [5, Eq. (2.5) in Prop. 2.2]. Therefore, it is easy to check that

$$\begin{aligned} J \leqslant \left\| H \right\| _{{\mathscr {B}}(L^p_+,L^p_+)}^{p}\int _{0}^{t}\Vert {\mathsf {B}}^{+}U_{0}(s)f\Vert _{L^p_+}^{p}\mathrm {d}s. \end{aligned}$$

which is the desired result. \(\square \)

We finally have the following

Lemma A.9

Given \(\lambda >0\) and \(f \in X\), set \(F_{1}=\int _{0}^{\infty }\exp (-\lambda t)U_{1}(t)f\mathrm {d}t.\) Then \(F_{1} \in {\mathscr {D}}({\mathcal {T}}_{\mathrm {max},\,p})\) with \({\mathcal {T}}_{\mathrm {max},\,p}F_{1}=\lambda \,F_{1}\) and \({\mathsf {B}}^{\pm }F_{1} \in L^{p}_{\pm }\) with

$$\begin{aligned} {\mathsf {B}}^{-}F_{1}=H{\mathsf {B}}^{+}C_{\lambda }f = HG_{\lambda }f\quad {\mathsf {B}}^{+}F_{1}=(M_{\lambda }H)G_{\lambda }f. \end{aligned}$$

Proof

Let us first assume \(f \in {\mathscr {D}}_{0}\). Then, for any \({\mathbf {y}}\in \Gamma _{-}\), \(s \in (0,\tau _{+}({\mathbf {y}}))\):

$$\begin{aligned} \begin{aligned} F_{1}(\Phi ({\mathbf {y}},s))&=\int _{s}^{\infty }\exp (-\lambda t)\left[ H{\mathsf {B}}^{+}U_{0}(t-s)f\right] ({\mathbf {y}})\mathrm {d}t\\&=\exp (-\lambda s)\,\int _{0}^{\infty }\exp (-\lambda t)\left[ H{\mathsf {B}}^{+}U_{0}(t)f\right] ({\mathbf {y}})\mathrm {d}t\\&=\exp (-\lambda s)\left[ H{\mathsf {B}}^{+}\left( \int _{0}^{\infty }\exp (-\lambda t)U_{0}(t)f\mathrm {d}t\right) \right] ({\mathbf {y}}) \end{aligned} \end{aligned}$$

i.e. \(F_{1}(\Phi ({\mathbf {y}},s))=\exp (-\lambda s)\left[ H{\mathsf {B}}^{+}C_{\lambda }f\right] ({\mathbf {y}}).\) This exactly means that \(F_{1}=\Xi _{\lambda }HG_{\lambda }f\). By a density argument, this still holds for \(f \in X\) and we get the desired result easily using the properties of \(\Xi _{\lambda }\) and \(G_{\lambda }.\) \(\square \)

The above lemmas prove that the conclusion of Theorem 3.8 is true for \(k=1.\) One proves then by induction that the conclusion is true for any \(k \geqslant 1\) exactly as above. Details are left to the reader.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arlotti, L., Lods, B. An \(L^{p}\)-Approach to the Well-Posedness of Transport Equations Associated to a Regular Field: Part II. Mediterr. J. Math. 16, 145 (2019). https://doi.org/10.1007/s00009-019-1426-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-019-1426-7

Keywords

Mathematics Subject Classification

Navigation