Skip to main content
Log in

Trigonometric-Fitted Explicit Numerov-Type Method with Vanishing Phase-Lag and Its First and Second Derivatives

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

An effectively four-stage, sixth-order, hybrid explicit Numerov-type method is presented for the solution of the special second-order initial value problem. The new method uses variable step, is trigonometric fitted and the phase-lag is nullified along with its first and second derivative. Extensive numerical tests illustrate the superiority of our proposal over similar methods found in the relevant literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chawla, M.M.: Numerov made explicit has better stability. BIT 24, 117 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chawla, M.M., Rao, P.S.: Numerov type method with minimal phase lag for the integration of second order periodic initial value problems. J. Comput. Appl. Math. 11, 277–281 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chawla, M.M., Rao, P.S.: Numerov type method with minimal phase lag for the integration of second order periodic initial value problems II. Explicit method. J. Comput. Appl. Math. 15, 329–337 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chawla, M.M., Rao, P.S.: An explicit sixth-order method with phase-lag of order eight for \(y^{\prime \prime }=f(t, y)\). J. Comput. Appl. Math. 17, 365–368 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tsitouras, Ch., Simos, T.E.: High algebraic, high phase-lag order embedded Numerov-type methods for oscillatory problems. Appl. Math. Comput 131, 201–211 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Tsitouras, Ch.: Dissipative high phase-lag order methods. Appl. Math. Comput. 117, 35–43 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Tsitouras, Ch.: Explicit Numerov-type methods with reduced number of stages. In: Stavrakakis, N. (ed.) Proc. 1st Inter. Symp. Nonlinear Problems, NTU Athens, p. 429 (2000)

  8. Tsitouras, Ch.: Explicit Numerov type methods with reduced number of stages. Comput. Math. Appl. 45, 37–42 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Papageorgiou, G., Tsitouras, Ch., Famelis, ITh: Explicit Numerov type methods for second order IVPs with oscillating solutions. Int. J. Mod. Phys. C 12, 657–666 (2001)

    Article  Google Scholar 

  10. Coleman, J.P.: Order conditions for a class of two-step methods for \(y^{\prime \prime }=f(x, y)\). IMA J. Numer. Anal. 23, 197–220 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tsitouras, Ch.: Explicit eighth order two-step methods with nine stages for integrating oscillatory problems. Int. J. Mod. Phys. C 17, 861–876 (2006)

    Article  MATH  Google Scholar 

  12. Famelis, ITh: Explicit eighth order numerov-type methods with reduced number of stages for oscillatory ivps. Int. J. Mod. Phys. C 19, 957–970 (2008)

    Article  MATH  Google Scholar 

  13. Tsitouras, Ch.: Explicit two-step methods for second order linear IVPs. Comput. Math. Appl. 43, 943–949 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Simos, T.E., Tsitouras, Ch.: Evolutionary generation of high order, explicit, two step methods for second order linear IVPs. Math. Methods Appl. Sci. 40, 6276–6284 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Famelis, ITh, Tsitouras, Ch.: Symbolic derivation of order conditions for hybrid Numerov-type methods solving \(y^{\prime \prime }=f(x, y)\). J. Comput. Appl. Math. 218, 543–555 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Famelis, ITh, Papakostas, S.N., Tsitouras, Ch.: Symbolic derivation of Runge–Kutta order conditions. J. Symb. Comput. 37, 311–327 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tsitouras, Ch., Famelis, ITh: Symbolic derivation of Runge–Kutta–Nyström order conditions. J. Math. Chem. 46, 896–912 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Simos, T.E., Tsitouras, Ch., Famelis, ITh: Explicit Numerov type methods with constant coefficients: a review. Appl. Comput. Math. 16, 89–113 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Simos, T.E., Tsitouras, Ch.: A new family of 7 stages, eighth order explicit Numerov-type methods. Math. Methods Appl. Sci. 40, 7867–7878 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tsitouras, Ch., Simos, T.E.: On ninth order, explicit Numerov-type methods with constant coefficients. Mediterr. J. Math. 15, 46 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tsitouras, Ch.: A parameter study of explicit Runge–Kutta pairs of orders 6(5). Appl. Math. Lett. 11, 65–69 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tsitouras, Ch., Papageorgiou, G.: Runge–Kutta interpolants based on values from two successive integration steps. Computing 43, 255–266 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kalogiratou, Z., Monovasilis, Th, Simos, T.E.: New modified Runge–Kutta–Nystrom methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60, 1639–1647 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Anastassi, Z.A., Simos, T.E.: A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236, 3880–3889 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Monovasilis, Th, Kalogiratou, Z., Simos, T.E.: Exponentially fitted symplectic Runge–Kutta–Nyström methods. Appl. Math. Inf. Sci. 7, 81–85 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Panopoulos, G.A., Simos, T.E.: An optimized symmetric 8-step semi-embedded predictor-corrector method for IVPs with oscillating solutions. Appl. Math. Inf. Sci. 7, 73–80 (2013)

    Article  MathSciNet  Google Scholar 

  27. Panopoulos, G.A., Simos, T.E.: A new optimized symmetric embedded predictor-corrector method (EPCM) for initial-value problems with oscillatory solutions. Appl. Math. Inf. Sci. 8, 703–713 (2014)

    Article  Google Scholar 

  28. Monovasilis, T., Kalogiratou, Z., Simos, T.E.: Construction of exponentially fitted symplectic Runge–Kutta–Nyström methods from partitioned Runge–Kutta methods. Mediterr. J. Math. 13, 2271–2285 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ramos, H., Kalogiratou, Z., Monovasilis, Th, Simos, T.E.: An optimized two-step hybrid block method for solving general second order initial-value problems. Numer. Algorithms 72, 1089–1102 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Simos, T.E.: Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. J. Appl. Math. 2012, Article ID 420387, 17 (2012). https://doi.org/10.1155/2012/420387

  31. Zhang, Wei, Simos, T.E.: A high-order two-step phase-fitted method for the numerical solution of the Schrödinger equation. Mediterr. J. Math. 13, 5177–5194 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Butcher, J.C.: Implicit Runge–Kutta processes. Math. Comput. 18, 50–64 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  33. Butcher, J.C.: On Runge–Kutta processes of high order. J. Austral. Math. Soc. 4, 179–194 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lambert, J.D., Watson, I.A.: Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  35. Alolyan, I., Simos, T.E.: A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 62, 3756–3774 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hui, Fei, Simos, T.E.: Four stages symmetric two-step P-stable method with vanished phase-lag and its first, second, third and fourth derivatives. Appl. Comput. Math. 15, 220–238 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Papadopoulos, D.F.: Simos, T.E: The use of phase lag and amplification error derivatives for the construction of a modified Runge-Kutta-Nyström method. Abstr. Appl. Anal. 2013, 910624 (2013)

    Article  MATH  Google Scholar 

  38. Simos, T.E.: On the explicit four-step methods with vanished phase-lag and its first derivative. Appl. Math. Inf. Sci. 8, 447–458 (2014)

    Article  MathSciNet  Google Scholar 

  39. Simos, T.E.: Multistage symmetric two-step P-stable method with vanished phase-lag and its first, second and third derivatives. Appl. Comput. Math. 14, 296–315 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Kalogiratou, Z., Monovasilis, Th, Ramos, Higinio, Simos, T.E.: A new approach on the construction of trigonometrically fitted two step hybrid methods. J. Comput. Appl. Math. 303, 146–155 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Monovasilis, Th, Kalogiratou, Z., Simos, T.E.: A family of trigonometrically fitted partitioned Runge–Kutta symplectic methods. Appl. Math. Comput. 209, 91–96 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Simos, T.E.: High order closed Newton–Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209, 137–151 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Simos, T.E.: Closed Newton–Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems. Appl. Math. Lett. 22, 1616–1621 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Simos, T.E.: Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Acta Appl. Math. 110, 1331–1352 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Simos, T.E.: New stable closed Newton–Cotes trigonometrically fitted formulae for long-time integration. Abstr. Appl. Anal. 2012, Article ID 182536, 15 (2012). https://doi.org/10.1155/2012/182536

  46. Monovasilis, Th., Kalogiratou, Z., Simos, T.E.: Trigonometrical fitting conditions for two derivative Runge–Kutta methods. Numer. Algorithms (2017). https://doi.org/10.1007/s11075-017-0461-3

  47. Berg, Dmitry B., Simos, T.E., Tsitouras, Ch.: Trigonometric fitted, eighth-order explicit Numerov-type methods. Math. Methods Appl. Sci. 41, 1845–1854 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wolfram Research, Inc.: Mathematica, version 11.1. Wolfram Research, Inc., Champaign (2017)

  49. Tsitouras, Ch., Famelis, ITh, Simos, T.E.: Phase-fitted Runge–Kutta pairs of orders 8(7). J. Comput. Appl. Math. 321, 226–231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Dong, Ming, Simos, T.E.: A new high algebraic order efficient finite difference method for the solution of the Schrödinger equation. Filomat 31, 4999–5012 (2018)

    Article  Google Scholar 

  51. Alolyan, I., Simos, T.E.: A new high order two-step method with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 50, 2351–2373 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Matlab.: MATLAB version 7.10.0. The MathWorks Inc., Natick (2010)

  53. Papageorgiou, G., Tsitouras, Ch., Papakostas, S.N.: Runge–Kutta pairs for periodic initial value problems. Computing 51, 151–163 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  54. Tsitouras, Ch., Famelis, ITh, Simos, T.E.: On modified Runge–Kutta trees and methods. Comput. Math. Appl. 62, 2101–2111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  55. Simos, T.E., Tsitouras, Ch.: Fitted modifications of classical Runge–Kutta pairs of orders 5(4). Math. Methods Appl. Sci. https://doi.org/10.1002/mma.4913

  56. Alolyan, I., Anastassi, Z.A., Simos, T.E.: A new family of symmetric linear four-step methods for the efficient integration of the Schrödinger equation and related oscillatory problems. Appl. Math. Comput. 218, 5370–5382 (2012)

    MathSciNet  MATH  Google Scholar 

  57. Vigo-Aguiar, J., Simos, T.E., Ferrndiz, J.M.: Controlling the error growth in long-term numerical integration of perturbed oscillations in one or several frequencies. Proc. R. Soc. Lond. A 460, 561–567 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  58. Tsitouras, Ch., Simos, T.E.: High order explicit methods for the integration of periodic initial value problems. Appl. Math. Comput. 95, 15–26 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  59. Kosti, A.A., Anastassi, Z.A., Simos, T.E.: Construction of an optimized explicit Runge–Kutta–Nyström method for the numerical solution of oscillatory initial value problems. Comput. Math. Appl. 61, 3381–3390 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  60. Panopoulos, G.A., Simos, T.E.: An eight-step semi-embedded predictorcorrector method for orbital problems and related IVPs with oscillatory solutions for which the frequency is unknown. J. Comput. Appl. Math. 290, 1–15 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. Stiefel, E., Bettis, D.G.: Stabilization of Cowell’s method. Numer. Math. 13, 154–175 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  62. Stavroyiannis, S., Simos, T.E.: Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59, 2467–2474 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  63. Papadopoulos, D.F., Simos, T.E.: A modified Runge–Kutta–Nyström method by using phase lag properties for the numerical solution of orbital problems. Appl. Math. Inf. Sci. 7, 433–437 (2013)

    Article  MathSciNet  Google Scholar 

  64. Monovasilis, T., Kalogiratou, Z., Ramos, Higinio, Simos, T.E.: Modified two-step hybrid methods for the numerical integration of oscillatory problems. Math. Methods Appl. Sci. 40, 5286–5294 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Simos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsitouras, C., Simos, T.E. Trigonometric-Fitted Explicit Numerov-Type Method with Vanishing Phase-Lag and Its First and Second Derivatives. Mediterr. J. Math. 15, 168 (2018). https://doi.org/10.1007/s00009-018-1216-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1216-7

Mathematics Subject Classification

Keywords

Navigation