Skip to main content
Log in

Trigonometrically fitted multi-step Runge-Kutta methods for solving oscillatory initial value problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, trigonometrically fitted multi-step Runge-Kutta (TFMSRK) methods for the numerical integration of oscillatory initial value problems are proposed and studied. TFMSRK methods inherit the frame of multi-step Runge-Kutta (MSRK) methods and integrate exactly the problem whose solutions can be expressed as the linear combinations of functions from the set of \(\{\exp (\mathrm {i}wt),\exp (-\mathrm {i}wt)\},\) or equivalently the set \(\{\cos (wt),\sin (wt)\}\), where w represents an approximation of the main frequency of the problem. The general order conditions are given and four new explicit TFMSRK methods with order three and four, respectively, are constructed. Stability of the new methods is examined and the corresponding regions of stability are depicted. Numerical results show that our new methods are more efficient in comparison with other well-known high quality methods proposed in the scientific literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petzold, L.R., Jay, L.O., Yen, J.: Numerical solution of highly oscillatory ordinary differential equations. Acta Numer. 6, 437–483 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Van der Houwen, P.J., Sommeijer, B.P.: Diagonally implicit Runge-Kutta-Nyström methods for oscillatory problems. SIAM J. Numer. Anal. 26, 414–429 (1989)

  3. Hairer, E., Nørsett, S.P., Wanner, G.: Solving ordinary differential equations I: nonstiff problems, 2nd ed. Springer-Verlag, Berlin (2002)

  4. Hairer, E., Wanner, G.: Solving ordinary differential equations II: stiff and differential-algebraic problems, 2nd ed. Springer-Verlag, Berlin (2002)

  5. Ixaru, L.G.: Exponential Fitting, Kluwer Academic Publishers, Dordrecht, Boston. London (2004)

  6. Simos, T.E.: A family of fifth algebraic order trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. Comput. Mater. Sci. 34, 342–354 (2005)

    Article  Google Scholar 

  7. Simos, T.E., Aguiar, J.V.: A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30, 121–131 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Franco, J.M.: Runge-Kutta methods adapted to the numerical integration of oscillatory problems. Numer. Math. Appl. 50, 427–443 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Van, de Vyver, H.: An embedded exponentially fitted Runge-Kutta-Nyström method for the numerical solution of orbital problems. New Astron. 11, 577–587 (2006)

  10. Gautschi, W.: Numerical integration of ordinary differential equation based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lyche, T.: Chebyshevian multistep methods for ordinary differential equations. Numer. Math. 19, 65–75 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially fitted Runge-Kutta methods. Comput. Phys. Comm. 123, 7–15 (1999)

  13. Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially fitted explicit Runge-Kutta methods. J. Comput. Appl. Math. 125, 107–115 (2000)

  14. Paternoster, B.: Runge-Kutta(-Nystrom) methods for ODEs with periodic solutions based on trigonometric polynomials. Appl. Numer. Math. 28, 401–412 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Burrage, K.: High order algebraically stable multistep Runge-Kutta methods. SIAM J. Numer. Anal. 24, 106–115 (1987)

  16. Burrage, K.: Order properties of implicit multivalue methods for ordinary 245 differential equations. IMA J. Numer. Anal 8, 43–69 (1988)

  17. Butcher, J.C.: Numerical methods for ordinary differential equations, 2nd edn. Wiley, Chichester (2008)

  18. Jackiewicz, Z., Tracogna, S.: A general class of two-step Runge-Kutta methods for ordinary differential equations. SIAM J. Numer. Anal. 32, 1390–1427 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jackiewicz, Z., Tracogna, S.: Variable stepsize continuous two-step Runge-Kutta methods for ordinary differential equations. Numer. Algor. 12, 347–368 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bartoszewski, Z., Jackiewicz, Z.: Construction of two-step Runge-Kutta methods of high order for ordinary differential equations. Numer. Algor. 18, 51–70 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hairer, E., Wanner, G.: Order conditions for general two-step Runge-Kutta Methods. SIAM J. Numer. Anal. 34, 2087–2089 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Butcher, J.C., Tracogna, S.: Order conditions for two-step Runge-Kutta methods. Appl. Numer. Math. 24, 351–364 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jackiewicz, Z.: General linear methods for ordinary differential equations. Wiley, New York (2009)

  24. Conte, D., D’Ambrosio, R., Jackiewicz, Z., Paternoster, B.: Numerical search for algebraically stable two-step almost collocation methods. J. Comput. Appl. Math. 239, 304–321 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. D’Ambrosio, R., Paternoster, B.: Two-step modified collocation methods with structured coefficient matrices. Appl. Numer. Math. 62, 1325–1334 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. D’Ambrosio, R., Esposito, E., Paternoster, B.: Exponentially fitted two-step Runge-Kutta methods: Construction and parameter selection. Appl. Math. Comput. 218, 7468–7480 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Franco, J.M.: Exponentially fitted explicit Runge-Kutta-Nyström methods. J. Comput. Appl. Math. 167, 1–19 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Van, de Vyver, H.: : Scheifele two-step methods for perturbed oscillators. J. Comput. Appl. Math. 224, 415–432 (2009)

  29. Franco, J.M.: A class of explicit two-step hybrid methods for second-order IVPs. J. Comput. Appl. Math. 187, 41–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Franco, J.M.: Runge-Kutta-Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Commun. 147, 770–787 (2002)

    Article  MATH  Google Scholar 

  31. Ramos, H., Vigo-Aguiar, J.: On the frequency choice in trigonometrically fitted methods. Appl. Math. Lett. 23, 1378–1381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vigo-Aguiar, J., Ramos, H.: On the choice of the frequency in trigonometrically-fitted methods for periodic problems. J. Comput. Appl. Math. 277, 94–105 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyong Li.

Additional information

The research was supported in part by the Natural Science Foundation of China under Grant No: 11401164, by the Hebei Natural Science Foundation of China under Grant No: A2014205136, by the Natural Science Foundation of China under Grant No: 11201113 and by the Specialized Research Foundation for the Doctoral Program of Higher Education under Grant No: 20121303120001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J. Trigonometrically fitted multi-step Runge-Kutta methods for solving oscillatory initial value problems. Numer Algor 76, 237–258 (2017). https://doi.org/10.1007/s11075-016-0252-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0252-2

Keywords

Navigation