Skip to main content
Log in

Infinitely Many Solutions for \(N-\)Kirchhoff Equation with Critical Exponential Growth in \({\mathbb {R}}^N\)

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the existence of infinitely many solutions to \(N-\)Kirchhoff type equation

$$\begin{aligned}&\left( a+\mu \left( \int _{\mathbb {R}^N}(|\nabla u|^N+V(x)|u|^N)\mathrm{d}x\right) ^{\tau }\right) \nonumber \\&\quad \times \;(-\Delta _Nu+V(x)|u|^{N-2}u)=f(x,u), \quad x\in \mathbb {R}^N, \end{aligned}$$
(0.1)

where \(N\ge 2, f(x,u)=\lambda h(x)|u|^{m-2}u+g(u)(1<m<N)\) and g(u) behaves like \(\exp (\alpha _0|u|^{\frac{N}{N-1}})\) when \(|u|\rightarrow \infty \). The potential function \(V(x)>0\) is continuous and bounded in \(\mathbb {R}^N\), \(\lambda \) is a nonnegative real parameter, \(h(x)\in L^{\sigma }(\mathbb {R}^N)\) with \(\sigma =\frac{N}{N-m}.\) Using variational methods and some special techniques, we prove that there exists \(\lambda _0>0\) such that problem (0.1) admits infinitely many nonnegative high-energy solutions provided that \(\lambda \in [0,\lambda _0)\). Also, we prove that problem (0.1) has infinitely many nonnegative solutions for \(f(x,u)=h|u|^{m-2}u,(1<m<N)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, S., Watanabe, T.: Uniqueness and non-degeneracy of positive radial solutions for quasilinear elliptic equations with exponential nonlinearity. Nonlinear Anal. 108, 275–290 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, C.O., Figueiredo, G.M.: On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in \(\mathbb{R}^N\). J. Differ. Equ. 246, 1288–1311 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alves, C.O., Souto, M.A.S.: Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity. J. Differ. Equ. 254, 1977–1991 (2013)

    Article  MATH  Google Scholar 

  4. Badiale, M., Serra, E.: Semilinear Elliptic Equations for Beginners, Existence Results via the Variational Approach. Springer, London (2011)

    Book  MATH  Google Scholar 

  5. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations, I. Existence of ground state. Arch. Ration. Mech. Anal. 82, 313–346 (1983)

    MathSciNet  MATH  Google Scholar 

  6. do Ó, J.M.B.: \(N-\)Laplacian equations in \({\mathbb{R}}^{N}\) with critical growth. Abstr. Appl. Anal. 2, 301–315 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. do Ó, J.M.B., de Souza, M.: Critical points for a functional involving critical growth of Trudinger–Moser type. Potential Anal. 42, 229–246 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. do Ó, J.M.B., de Souza, M., de Medeiros, E., Severo, U.: An improvement for the Trudinger–Moser inequality and applications. J. Differ. Equ. 256, 1317–1349 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezis, H., Lieb, E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cazenave, T.: Semilinear Schrödinger Equations, Courant Lecture Notes, vol. 10. American Mathematical Society, Providence (2003)

    Google Scholar 

  11. Chen, C.S., Yang, H.W.: Multiple solutions for a class of quasilinear Schrödinger systems in \({\mathbb{R}}^{N}\). Bull. Malays. Math. Sci. Soc. https://doi.org/10.1007/s40840-017-0502-z

  12. Chen, C.S., Yuan, Q.: Existence of solution to \(p-\)Kirchhoff type problem in \(\mathbb{R}^N\) via Nehari manifold. Commun. Pure Appl. Anal. 13(6), 2289–2303 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheng, X.Y., Dai, G.W.: Positive solutions for \(p-\)Kirchhoff type problems on \({\mathbb{R}}^{N}\). Math. Methods Appl. Sci. (2014). https://doi.org/10.1002/mma.3396

  14. Edmunds, D.E., Ilyin, A.A.: Asymptotically sharp multiplicative inequalities. Bull. Lond. Math. Soc. 27(1), 71–74 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fan, H.N., Liu, X.C.: Positive and negative solutions for a class of Kirchhoff type problems on unbounded domain. Nonlinear Anal. 114, 186–196 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. de Freitas, L.R.: Multiplicity of solutions for a class of quasilinear equations with exponential critical growth. Nonlinear Anal. 95, 607–624 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  18. Ikoma, N.: Existence of ground state solutions to the nonlinear Kirchhoff type equations with potentials. Discret. Contin. Dyn. Syst. A 35(3), 943–966 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kajikiya, R.: A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations. J. Funct. Anal. 225, 352–370 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lam, N., Lu, G.: Existence and multiplicity of solutions to equations of \(N\)-Laplacian type with critical exponential growthin \(\mathbb{R}^N\). J. Funct. Anal. 262, 1132–1165 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, Y.H., Li, F.Y., Shi, J.P.: Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Equ. 253, 2285–2294 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, Q., Yang, Z.D.: Multiple solutions for \(N-\)Kirchhoff type problems with critical exponential growth in \(\mathbb{R}^N\). Nonlinear Anal. 117, 159–168 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, W., He, X.: Multiplicity of high energy solutions for superlinear Kirchhoff equations. J. Appl. Math. Comput. 39(1–2), 473–487 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nie, J.J., Wu, X.: Existence and multiplicity of non-trivial solutions for Schrödinger–Kirchhoff-type equations with radial potential. Nonlinear Anal. 75, 3470–3479 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Application to Differential Equations. In: CBMS Reg. Conf. Ser. Math., Vol. 65. American Mathematical Society, Providence (1986)

  27. de Souza, M., de Medeiros, E., Severo, U.: On a class of quasilinear elliptic problems involving Trudinger–Moser nonlinearities. J. Math. Anal. Appl. 403, 357–364 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. de Souza, M.: On a singular elliptic problem involving critical growth in \(\mathbb{R}^N\). Nonlinear Differ. Equ. Appl. 18, 199–199 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. de Souza, M., do Ó, J.M.: On a singular and nonhomogeneous N-Laplacian equation involving critical growth. J. Math. Anal. Appl. 380, 241–263 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Struwe, M.: Variational Methods, 3rd edn. Springer, New York (2000)

    Book  MATH  Google Scholar 

  31. Trudinger, N.: On imbedding into Orlicz space and some applications. J. Math. Mech. 17, 473–484 (1967)

    MathSciNet  MATH  Google Scholar 

  32. Yuan, Q., Chen, C.S., Yang, H.W.: Existence of positive solutions for Schrödinger–Poisson system with bounded potential and weighted functions in \({\mathbb{R}}^{3}\). (To be published in Boundary Value Problems)

  33. Wang, L.: On a quasilinear Schrödinger–Kirchhoff-type equation with radial potentials. Nonlinear Anal. 83, 58–68 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu, X.: Existence of nontrivial solutions and high energy solutions for Schrödinger–Kirchhoff-type equations in \(\mathbb{R}^N\). Nonlinear Anal. Real World Appl. 12, 1278–1287 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caisheng Chen.

Additional information

This work is supported by the NSFC (No. 11571092).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C. Infinitely Many Solutions for \(N-\)Kirchhoff Equation with Critical Exponential Growth in \({\mathbb {R}}^N\) . Mediterr. J. Math. 15, 4 (2018). https://doi.org/10.1007/s00009-017-1048-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-1048-x

Mathematics Subject Classification

Keywords

Navigation