Skip to main content
Log in

Mixed Wavelet Leaders Multifractal Formalism in a Product of Critical Besov Spaces

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we will prove (resp. study) the Baire generic validity of the upper-Hölder (resp. iso-Hölder) mixed wavelet leaders multifractal formalism on a product of two critical Besov spaces \(B_{t_{1}}^{\frac{m}{t_{1}},q_{1}}(\mathbb {R}^m) \times B_{t_{2}}^{\frac{m}{t_{2}},q_{2}}(\mathbb {R}^m)\), for \(t_1,t_2>0\), \(q_1 \le 1\) and \(q_2 \le 1\). Contrary to product spaces \(B_{t_{1}}^{s_{1},\infty }(\mathbb {R}^m) \times B_{t_{2}}^{s_{2},\infty }(\mathbb {R}^m) \) with \(s_{1} > \frac{m}{t_{1}}\) and \(s_{2} >\frac{m}{t_{2}}\) (Ben Slimane in Mediterr J Math, 13(4):1513–1533, 2016) and \((B_{t_{1}}^{s_{1},\infty }(\mathbb {R}^m) \cap C^{\gamma _{1}}(\mathbb {R}^m)) \times (B_{t_{2}}^{s_{2},\infty }(\mathbb {R}^m) \cap C^{\gamma _{2}}(\mathbb {R}^m)\) with \(0<\gamma _{1}<s_{1}<\frac{m}{t_{1}}\) and \(0<\gamma _{2}<s_{2}<\frac{m}{t_{2}}\) (Ben Abid et al. in Mediterr J Math, 13(6):5093–5118, 2016), all pairs of functions in the obtained generic set are not uniform Hölder. Nevertheless, the characterization of the upper bound of the Hölder exponent by decay conditions of local wavelet leaders suffices for our study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aouidi, J., Ben Mabrouk, A., Ben Slimane, M.: A wavelet multifractal formalism for simultaneous singularities of functions. Int. J. Wavelets Multiresolut. Inf. Process. 12(1), 1450009 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arneodo, A., Bacry, E., Muzy, J.-F.: Singularity spectrum of fractal signals from wavelet analysis: exact results. J. Stat. Phys. 70, 635–674 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben Slimane, M., Ben Mabrouk, A., Aouidi, J.: Mixed multifractal analysis for functions: general upper bound and optimal results for vectors of self-similar or quasi-self-similar of functions and their superpositions. Fractals 24(4), 1650039-1–1650039-12 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barreira, L., Saussol, B.: Variational principles and mixed multifractal spectra. Trans. Am. Math. Soc. 353, 3919–3944 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barreira, L., Saussol, B., Schmeling, J.: Higher-dimensional multifractal analysis. J. Math. Pures Appl. 81(1), 67–91 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben Abid, M., Ben Slimane, M., Ben Omrane, I.: Mixed wavelet leaders multifractal formalism for Baire generic functions in a product of intersections of Hölder spaces with noncontinuous Besov spaces. Mediterr. J. Math. 13(6), 5093–5118 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben Abid, M., Seuret, S.: Hölder regularity of \(\mu \)-similar functions. Constr. Approx. 31(1), 69–93 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben Slimane, M.: Etude du Formalisme Multifractal pour les fonctions. Thèse de Doctorat, Ecole Nationale des Ponts et Chaussées (France) (1996)

  9. Ben Slimane, M.: Formalisme Multifractal pour quelques généralisations des fonctions autosimilaires. C. R. Acad. Sci. Paris Sér. I Math. 324, 981–986 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ben Slimane, M.: Multifractal formalism and anisotropic selfsimilar functions. Math. Proc. Camb. Philos. Soc. 124, 329–363 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ben Slimane, M.: Multifractal formalism for selfsimilar functions under the action of nonlinear dynamical systems. Constr. Approx. 15, 209–240 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ben Slimane, M.: Multifractal formalism for selfsimilar functions expanded in singular basis. Appl. Comput. Harmon. Anal. 11, 387–419 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ben Slimane, M.: Some functional equations revisited: the multifractal properties. J. Integral Trans. Spec. Func. 14, 333–348 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ben Slimane, M.: Baire typical results for mixed Hölder spectra on product of continuous Besov or oscillation spaces. Mediterr. J. Math. 13(4), 1513–1533 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Daubechies, I., Lagarias, J.C.: On the thermodynamic formalism for functions. Rev. Math. Phys. 6, 1033–1070 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Toronto (1990)

    MATH  Google Scholar 

  17. Fraysse, A.: Generic validity of the multifractal formalism. SIAM J. Math. Anal. Soc. Ind. Appl. Math. 39(2), 593–607 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fraysse, A., Jaffard, S.: How smooth is almost every function in Sobolev space? Revis. Math. Iberoam. 22(2), 663–682 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frisch, U., Parisi, G.: Fully developed turbulence and intermittency. In: Fermi, E. (ed.) Proceedings of the International Summer School in Physics, pp. 84–88. North Holland, Amsterdam (1985)

  20. Jaffard, S.: The spectrum of singularities of Riemann’s function. Revis. Math. Iberoam. 12(2), 441–460 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jaffard, S.: Multifractal formalism for functions. Part 1: results valid for all functions and part 2: selfsimilar functions. SIAM J. Math. Anal. 28, 944–998 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jaffard, S.: The multifractal nature of the Lévy processes. Probab. Theory Relat. Fields 114, 207–227 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jaffard, S.: On lacunary wavelet series. Ann. Appl. Probab. 10(1), 313–329 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jaffard, S.: On the Frisch–Parisi conjecture. J. Math. Pures Appl. 79, 525–552 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jaffard, S.: Wavelet techniques in multifractal analysis, Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot. In: Lapidus, M., Van Frankenhuijsen, M. (eds.) Proceedings of Symposia in Pure Mathematics, vol. 72, Part 2. AMS, pp. 91–152. New York (2004)

  26. Jaffard, S.: Beyond Besov spaces, part 2: oscillation spaces. Constr. Approx. 21, 29–61 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Jaffard, S., Meyer, Y.: On the pointwise regularity of functions in critical Besov spaces. J. Funct. Anal. 175, 415–434 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mélot, C.: Oscillating singularities in Besov spaces. J. Math. Pures Appl. 83, 367–416 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Meyer, Y.: Ondelettes et opérateurs. Hermann, Paris (1990)

    MATH  Google Scholar 

  30. Olsen, L.: Mixed generalized dimensions of self-similar measures. J. Math. Anal. Appl. 306, 516–539 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Peyrière, J.: A vectorial multifractal formalism. In: Lapidus, M., van Frankenhuijsen, M. (eds.) Proceedings of Symposia in Pure Mathematics, vol. 72, Part 2. AMS, pp. 217–230. New York (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Ben Slimane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Abid, M., Ben Slimane, M., Ben Omrane, I. et al. Mixed Wavelet Leaders Multifractal Formalism in a Product of Critical Besov Spaces. Mediterr. J. Math. 14, 176 (2017). https://doi.org/10.1007/s00009-017-0964-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-0964-0

Mathematics Subject Classification

Keywords

Navigation