Skip to main content
Log in

A New and Elegant Approach for Solving \(\varvec{n \times n}\)-Order Linear Fractional Differential Equations

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

The application of fractional differential equations (FDEs) in the fields of science and engineering are gradually increasing day by day during the last two decades. The solutions of linear systems of FDEs are of great importance. Several investigations are carried out on such systems using eigenvalue analysis or Laplace transform method. But both the methods have limitations, and as of now there are no methods for solving \(n \times n\)-order linear FDEs. In the present investigation, the issues of such difficulties are addressed, and the exact solutions of linear \(2 \times 2\)-order linear FDEs are presented by Laplace transform. We are unable to provide the exact solutions of such system of order \(n \times n\) by Laplace transform. To overcome this, we provide a new and elegant approach to find the approximate solutions of \(n \times n\)-order linear FDEs with the help of residual power series (RPS) method. The results thus obtained are verified by providing numerous examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alquran, M., Al-Khaled, K., Sarda, T., Chattopadhyay, J.: Revisited Fisher’s equation in a new outlook: a fractional derivative approach. Phys. A: Stat. Mech. Appl. 438, 81–93 (2015)

    Article  MathSciNet  Google Scholar 

  2. Odibat, Z.: Analytic study on linear systems of fractional differential equations. Comput. Math. Appl. 59, 1171–1183 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gupta, S., Kumar, D., Singh, J.: Numerical study for systems of fractional differential equations via Laplace transform. J. Egypt. Math. Soc. 23(2), 256–262 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Momani, S., Odibat, Z.: Numerical approach to differential equations of fractional order. J. Comput. Appl. Math. 207, 96–110 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lin, S.D., Lu, C.H.: Laplace transform for solving some families of fractional differential equations and its applications. Adv. Differ. Equ. 137, 1–9 (2013)

  6. Li, C.P., Zhang, F.R.: A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193, 27–47 (2011)

    Article  Google Scholar 

  7. Podlubny, I.: The Laplace Transform Method for Linear Differential Equations of Fractional Order. Slovak Academy of Sciences, Slovak Republic (1994)

    Google Scholar 

  8. Liang, S., Wu, R., Chen, L.: Laplace transform of fractional order differential equations. Electron. J. Differ. Equ. 139, 1–15 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Oberhettinger, F., Badii, L.: Tables of Laplace Transforms, p. 139. Springer, Berlin (1973)

    Book  MATH  Google Scholar 

  10. Gomez-Aguilar, J.F., Razo-Hernandez, R., Granados-Lieberman, D.: A physical interpretation of fractional calculus in observables terms: analysis of the fractional time constant and the transitory response. Revista Mexicana de Fisica 60, 32–38 (2014)

    MathSciNet  Google Scholar 

  11. El-Ajou, A., Abu Arqub, O., Momani, S.: Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: a new iterative algorithm. J. Comput. Phys. 293, 81–95 (2015)

  12. El-Ajou, A., Abu Arqub, O., Al Zhour, Z., Momani, S.: New results on fractional power series: theories and applications. Entropy 15, 5305–5323 (2013)

  13. Mittag Leffler, G.M.: Sur la nouvelle fonction \({\bf E}_{\alpha }(x)\). C. R. Acad. Sci. Paris (Ser. II) 137, 554–558 (1903)

  14. Wiman, A.: Uber den Fundamental satz in der Theorie de Funktionen \({E}_{\alpha }(x)\). Acta Math. 29, 191–201 (1905)

    Article  MathSciNet  MATH  Google Scholar 

  15. Agarwal, R.P.: A propos d’une note de M. Pierre Humbert. C.R. Acad. Sci. Paris 296, 2031–2032 (1953)

  16. Humbert, P., Agarwal, R.P.: Sur la fonction de Mittag-Leffler et quelques unes de ses generalizations. Bull. Sci. Math. Ser. II(77), 180–185 (1953)

    MATH  Google Scholar 

  17. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5, 367–386 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1990)

    MATH  Google Scholar 

  19. Alquran, M., Al-Khaled, K., Chattopadhyay, J.: Analytical solutions of fractional population diffusion model: residual power series. Nonlinear Stud. 22(1), 31–39 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Alquran, M.: Analytical solutions of fractional foam drainage equation by residual power series method. Math. Sci. 8(4), 153–160 (2014)

    Article  MathSciNet  Google Scholar 

  21. Alquran, M.: Analytical solution of time-fractional two-component evolutionary system of order 2 by residual power series method. J. Appl. Anal. Comput. 5(4), 589–599 (2015)

    MathSciNet  Google Scholar 

  22. Jaradat, H.M., Al-Shara, S., Khan, Q.J.A., Alquran, M., Al-Khaled, K.: Analytical solution of time-fractional Drinfeld-Sokolov-Wilson system using residual power series method. IAENG Int. J. Appl. Math. 46(1), 64–70 (2016)

  23. Abu Arqub, O.: Series solution of fuzzy differential equations under strongly generalized differentiability. J. Adv. Res. Appl. Math. 5, 31–52 (2013)

  24. Abu Arqub, O., El-Ajou, A., Bataineh, A., Hashim, I.: A representation of the exact solution of generalized Lane Emden equations using a new analytical method. Abstr. Appl. Anal. 2013, Article ID 378593, 10 pp. (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal Ababneh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ababneh, F., Alquran, M., Al-Khaled, K. et al. A New and Elegant Approach for Solving \(\varvec{n \times n}\)-Order Linear Fractional Differential Equations. Mediterr. J. Math. 14, 98 (2017). https://doi.org/10.1007/s00009-017-0899-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-0899-5

Keywords

Mathematics Subject Classification

Navigation