Skip to main content
Log in

Study of Some Non-linear Elliptic Problems with No Continuous Lower Order Terms in Orlicz Spaces

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this study, we shall be concerned with the existence result of the non-linear elliptic equations of the form, \({Au-div(\Phi(x,u)) = f,}\) where the term \({Au=-div(a(x,u,\nabla u))}\) is a Leray–Lions operator defined on \({W_0^{1}L_M(\Omega)}\) into its dual \({W^{-1}L_{\overline{M}}(\Omega)}\), where \({M}\) is an \({N}\)-function without assuming a \({\Delta_2}\)-condition on \({M}\), the second term \({f}\) belongs to \({L^1(\Omega)}\), and the function \({\Phi}\) is not a continuous function with respect to \({x}\) which cannot be managed by the divergence Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

  2. Aharouch L., Benkirane A., Rhoudaf M.: Existence results for some unilateral problems without sign condition with obstacle free in Orlicz spaces. Nonlinear Anal. 68, 2362–2380 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aharouch L., Azroul E., Rhoudaf M.: Existence of solutions for unilateral problems in \({L^1}\) involving lower order terms in divergence form in Orlicz spaces. J. Appl. Anal. 13, 151–181 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Apushkinskaya D., Bildhauer M., Fuchs M.: Steady states of anisotropic generalized Newtonian fluids. J. Math. Fluid Mech. 7, 261–297 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Azroul E., Redwane H., Rhoudaf M.: Existence of a renormalized solution for a class of nonlinear parabolic equations in Orlicz spaces. Port. Math. 66(1), 29–63 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benkirane A., Elmahi A.: Almost every where convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application. Nonlinear Anal. T. M. A. 11(28), 1769–1784 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bénilan P., Boccardo L., Gallouët T., Gariepy R., Pierre M., Vazquez J.L.: An \({L^1}\)-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa. 22, 241–273 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Bildhauer, M., Fuchs, M., Zhong, X.: On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids. Algebra i Analiz 18, 1–23 (2007) (translation in: St. Petersburg Math. J. 18, 183–199)

  9. Blanchard D., Porretta A.L.: A Stefan problems with nonlinear diffusion and convection. J. Differ. Equ. 210, 383–428 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boccardo L., Murat F., Puel J.P.: Existence of bounded solutions for non linear elliptic unilateral problems. Ann. Mat. Pura Appl. 152, 183–196 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boccardo, L., Crose, G., Orsina, L.: Existence of solutions for some non coercive elliptic problems involving derivatives of nonlinear terms. Differ. Equ. Appl. 4(1), 39 (2012)

  12. Boccardo L., Giachetti D., Diaz J.I., Murat F.: Existence and regularity of renormalized solutions for some elliptic problems involving derivation of nonlinear terms. J. Differ. Equ. 106, 215–237 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boccardo L., Gallouët T.: Nonlinear elliptic equations with right hand side measure. Comm. Partial Differ. Equ. 17, 641–655 (1992)

    Article  MATH  Google Scholar 

  14. Boccardo L., Gallouët T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dal Maso, G., Murat, F., Orsina, L., Prignet, A.: Renormalized solution of elliptic equation with general measure data. Ann. Scuola Norm. Sup. Pisa CI. Sci. 28(4), 741–808 (1999)

  16. Diperna R.J., Lions P.L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. 130, 321–366 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fuchs M., Gongbao L.: Variational inequalities for energy functionals with nonstandard growth conditions. Abstr. Appl. Anal. 3, 41–64 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fuchs M., Seregin G.: Variational methods for fluids for Prandtl–Eyring type and plastic materials with logarithmic hardening. Math. Methods Appl. Sci. 22, 317–351 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gossez J.P., Mustonen V.: Variational inequalities in Orlics-spaces. Nonlinear Anal. 11, 379–492 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gossez J.P.: Nonlinear elliptic boundary value problems for equation with rapidly or slowly increasing coefficients. Trans. Am. Math. Soc. 190, 217–237 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gossez J.P.: Nonlinear elliptic boundary value problems for equations with rapidly or slowly increasing coefficients. Trans. Am. Math. Soc. 190, 163–205 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gossez J.P.: Some approximation properties in Orlicz–Sobolev. Studia Math. 74, 17–24 (1982)

    MathSciNet  MATH  Google Scholar 

  23. Kufner, A., Jhon, O., Opic, B.: Function Spaces. Academia, Praha (1977)

  24. Leone C., Porretta A.: Entropy solutions for nonlinear elliptic equations in \({L^1}\). Nonlinear Anal. T.M.A. 32, 325–334 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Krasnosel’skii, M., Rutickii, Ya.: Convex Functions and Orlicz Spaces. Noordhoff, Groningen (1969).

  26. Lions, P.L.: Mathematical Topics in Fluid Mechanics, vol. 1. Incompressible Models. Oxford Univ. Press, Oxford (1996)

  27. Murat, F.: oluciones renormalizadas de EDP elipticas non lineales, Cours à l’Université de Séville, Publication R93023, Laboratoire d’Analyse Numérique, Paris VI (1993)

  28. Nassar S.H., Moussa H., Rhoudaf M.: Renormalized solution for a nonlinear parabolic problems with noncoercivity in divergence form in Orlicz Spaces. Appl. Math. Comput. 249, 253–264 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Rajagopal, K.R., Ru̇žička, M.: Mathematical modeling of electrorheological materials. Contin. Mech. Thermodyn. 13, 5978 (2001)

  30. Rakotoson, J.M.: Uniqueness of renormalized solution in a \({T}\)-set for the \({L^1}\)-data problem and the link between various formulations. Indiana Univ. Math. J. 43(2), 7685–702 (1994)

  31. Ru̇žička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics. Springer, Berlin (2000)

  32. Seregin, G., Frehse, J.: Regularity of solutions to variational problems of the deformation theory of plasticity with logarithmic hardening. SFB 256. Preprint 421, Bonn 1995; Tr. St.-Peterbg. Mat. Obshch. 5, 184–222 (1998) [English transl. Amer. Math. Soc. Transl. Ser. 2 193, 127–152 (1999)]

  33. Stampacchia, G.: Equations Elliptiques du second ordre coefficients discontinus. Les Presses de L’Université de Montréal (1966)

  34. Tienari, M.: A degree theory for a class of mappings of monotone type in Orlicz–Sobolev spaces. Ann. Acad. Scientiarum Fennice Helsinki (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Moussa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussa, H., Rhoudaf, M. Study of Some Non-linear Elliptic Problems with No Continuous Lower Order Terms in Orlicz Spaces. Mediterr. J. Math. 13, 4867–4899 (2016). https://doi.org/10.1007/s00009-016-0780-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-016-0780-y

Mathematics Subject Classification

Keywords

Navigation