Skip to main content
Log in

Beyond the 10-fold Way: 13 Associative \( {\mathbb Z}_2\times {\mathbb Z}_2\)-Graded Superdivision Algebras

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The “10-fold way” refers to the combined classification of the 3 associative division algebras (of real, complex and quaternionic numbers) and of the 7, \({\mathbb Z}_2\)-graded, superdivision algebras (in a superdivision algebra each homogeneous element is invertible). The connection of the 10-fold way with the periodic table of topological insulators and superconductors is well known. Motivated by the recent interest in \({\mathbb Z}_2\times {\mathbb Z}_2\)-graded physics (classical and quantum invariant models, parastatistics) we classify the associative \({\mathbb Z}_2\times {\mathbb Z}_2\)-graded superdivision algebras and show that 13 inequivalent cases have to be added to the 10-fold way. Our scheme is based on the “alphabetic presentation of Clifford algebras”, here extended to graded superdivision algebras. The generators are expressed as equal-length words in a 4-letter alphabet (the letters encode a basis of invertible \(2\times 2\) real matrices and in each word the symbol of tensor product is skipped). The 13 inequivalent \({\mathbb Z}_2\times {\mathbb Z}_2\)-graded superdivision algebras are split into real series (4 subcases with 4 generators each), complex series (5 subcases with 8 generators) and quaternionic series (4 subcases with 16 generators). As an application, the connection of \({\mathbb Z}_2\times {\mathbb Z}_2\)-graded superdivision algebras with a parafermionic Hamiltonian possessing time-reversal and particle-hole symmetries is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors can confirm that all relevant data are included in the article.

References

  1. Aizawa, N., Doi, S.: Comments of \( {\mathbb{Z}}_2\times {\mathbb{Z}}_2\)-supersymmetry in superfield formalism. arXiv:2109.14227 [math-ph]

  2. Aizawa, N., Kuznetsova, Z., Toppan, F.: \( {\mathbb{Z}}_2\times {\mathbb{Z}}_2\)-graded mechanics: the classical theory. Eur. J. Phys. C 80, 668 (2020). arXiv:2003.06470 [hep-th]

    Article  ADS  Google Scholar 

  3. Aizawa, N., Kuznetsova, Z., Toppan, F.: \( {\mathbb{Z}}_2\times {\mathbb{Z}}_2\)-graded mechanics: the quantization. Nucl. Phys. B 967, 115426 (2021). arXiv:2005.10759 [hep-th]

    Article  MATH  Google Scholar 

  4. Aizawa, N., Kuznetsova, Z., Tanaka, H., Toppan, F.: \( {\mathbb{Z}}_2\times {\mathbb{Z}}_2\)-graded Lie symmetries of the Lévy–Leblond equations. Prog. Theor. Exp. Phys. 2016, 123A01 (2016). arXiv:1609.08224 [math-ph]

    Article  MATH  Google Scholar 

  5. Aizawa, N., Kuznetsova, Z., Tanaka, H., Toppan, F.: Generalized supersymmetry and Lévy–Leblond equation. In: Duarte, S., et al. (eds.) Physical and Mathematical Aspects of Symmetries, p. 79. Springer, Cham (2017) . arXiv:1609.08760 [math-ph]

    Chapter  MATH  Google Scholar 

  6. Aizawa, N., Amakawa, K., Doi, S.: \({\cal{N} }\)-extension of double-graded supersymmetric and superconformal quantum mechanics. J. Phys. A Math. Theor. 53, 065205 (2020). arXiv:1905.06548 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Aizawa, N., Amakawa, K., Doi, S.: \({\mathbb{Z}}_2^n\)-graded extensions of supersymmetric quantum mechanics. J. Math. Phys. 61, 052105 (2020). arXiv:1912.11195 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Altland, A., Zirnbauer, M.R.: Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55, 1142 (1997). arXiv:cond-mat/9602137

    Article  ADS  Google Scholar 

  9. Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology 3(Supp. 1), 3 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  10. Baez, J.C.: The tenfold way. Not. Am. Math. Soc. 67(10), 1599 (2020). arXiv:2011.14234 [math.RA]

    MATH  Google Scholar 

  11. Bruce, A.J.: \( {\mathbb{Z}}_2\times {\mathbb{Z}}_2\)-graded supersymmetry: 2-d sigma models. J. Phys. A Math. Theor. 53, 455201 (2020). arXiv:2006.08169 [math-ph]

    Article  ADS  Google Scholar 

  12. Bruce, A.J.: Is the \( {\mathbb{Z}}_2\times {\mathbb{Z}}_2\)-graded sine-Gordon equation integrable? Nucl. Phys. B 971, 115514 (2021). arXiv:2106.6372 [math-ph]

    Article  MATH  Google Scholar 

  13. Bruce, A.J., Duplij, S.: Double-graded supersymmetric quantum mechanics. J. Math. Phys. 61, 063503 (2020). arXiv:1904.06975 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bruce, A.J., Duplij, S.: Double-graded quantum superplane. Rep. Math. Phys. 86(3), 383 (2020). arXiv:1910.12950 [math.QA]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Bruce, A.J., Grabowski, J.: Riemannian structures on \({\mathbb{Z}}_2^n\)-manifolds. Mathematics 8, 1469 (2020). arXiv:2007.07666

    Article  Google Scholar 

  16. Carrion, H.L., Rojas, M., Toppan, F.: Quaternionic and octonionic spinors. A classification. JHEP 0304, 040 (2003). arXiv:hep-th/0302113

    Article  MathSciNet  Google Scholar 

  17. Childs, L.N., Garfinkel, G., Orzech, M.: The Brauer group of graded Azumaya algebras. Trans. Am. Math. Soc. 175, 299 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dyson, F.J.: The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys. 3, 1199 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Freed, D.S., Moore, G.W.: Twisted equivariant matter. Ann. Henri Poincaré 14, 1927 (2013). arXiv:1208.5055 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Fröhlich, A., Wall, C.T.C.: Equivariant Brauer groups. In: Proceedings of the Conference “Quadratic Forms and Their Applications”, Dublin 1999; Contemp. Math., vol. 272. A.M.S., p. 57 (2000)

  21. Huerta Alderete, C., Green, A.M., Nguyen, N.H., Zhu, Y., Rodríguez-Lara, B.M., Linke, N.M.: Experimental realization of para-particle oscillators. arXiv:2108.05471 [quant-ph]

  22. Kitaev, A.: Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22 (2009). arXiv:0901.2686 [cond-mat.mes-hall]

    Article  ADS  MATH  Google Scholar 

  23. Kuznetsova, Z., Toppan, F.: Superalgebras of (split-)division algebras and the split-octonionic \(M\)-theory in \((6,5)\)-signature. arXiv:hep-th/0610122

  24. Kuznetsova, Z., Toppan, F.: Classification of minimal \( {\mathbb{Z}}_2\times {\mathbb{Z}}_2\)-graded Lie (super)algebras and some applications. J. Math. Phys. 62, 063512 (2021). arXiv:2103.04385 [math-ph]

    Article  ADS  MATH  Google Scholar 

  25. Long, F.W.: A generalization of the Brauer group of graded algebras. Proc. Lond. Math. Soc. (3) 29, 237 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  26. McCrimmon, K.: A Taste of Jordan Algebras. Universitext Springer, New York (2004)

    MATH  Google Scholar 

  27. Morimoto, T., Furusaki, A.: Topological classification with additional symmetries from Clifford algebras. Phys. Rev. B 88, 125129 (2013). arXiv:1306.2505

    Article  ADS  Google Scholar 

  28. Okubo, S.: Real representations of finite Clifford algebras. I. Classification. J. Math. Phys. 32, 1657 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Quesne, C.: Minimal bosonization of double-graded quantum mechanics. Mod. Phys. Lett. A 36, 2150238 (2021). arXiv:2108.06243 [math-ph]

    Article  ADS  MathSciNet  Google Scholar 

  30. Rittenberg, V., Wyler, D.: Sequences of \(Z_2\otimes Z_2\) graded Lie algebras and superalgebras. J. Math. Phys. 19, 2193 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Rittenberg, V., Wyler, D.: Generalized superalgebras. Nucl. Phys. B 139, 189 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Ryu, S., Schnyder, A.P., Furusaki, A., Ludwig, A.W.W.: Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12, 065010 (2010). arXiv:0912.2157 [cond-mat.mes-hall]

    Article  ADS  Google Scholar 

  33. Scheunert, M.: Generalized Lie algebras. J. Math. Phys. 20, 712 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Stoilova, N.I., Van der Jeugt, J.: The \( {\mathbb{Z}}_2\times {\mathbb{Z}}_2\)-graded Lie superalgebra \(pso(2m+1|2n)\) and new parastatistics representations. J. Phys. A Math. Theor. 51, 135201 (2018). arXiv:1711.02136 [math-ph]

    Article  ADS  MATH  Google Scholar 

  35. Tolstoy, V.N.: Once more on parastatistics. Phys. Part. Nucl. Lett. 11, 933 (2014). arXiv:1610.01628 [math-ph]

    Article  Google Scholar 

  36. Toppan, F.: \( {\mathbb{Z}}_2\times {\mathbb{Z}}_2\)-graded parastatistics in multiparticle quantum Hamiltonians. J. Phys. A Math. Theor. 54, 115203 (2021). arXiv:2008.11554 [hep-th]

    Article  ADS  MATH  Google Scholar 

  37. Toppan, F.: Inequivalent quantizations from gradings and \( {\mathbb{Z}}_2\times {\mathbb{Z}}_2\)-graded parabosons. J. Phys. A Math. Theor. 54, 355202 (2021). arXiv:2104.09692 [hep-th]

    Article  MATH  Google Scholar 

  38. Toppan, F., Verbeek, P.W.: On alphabetic presentations of Clifford algebras and their possible applications. J. Math. Phys. 50, 123523 (2009). arXiv:0903.0940 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Wall, C.T.C.: Graded Brauer groups. J. Reine Angew. Math. 213, 187 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zirnbauer, M.: Riemannian symmetric superspaces and their origin in random-matrix theory. J. Math. Phys. 37, 4986 (1996). arXiv:math-ph/9808012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Zirnbauer, M.R.: Particle-hole symmetries in condensed matter. J. Math. Phys. 62, 021101 (2021). arXiv:2004.07107

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by CNPq (PQ grant 308846/2021-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Toppan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Michaela Vancliff.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Alphabetic Presentation of Superdivision Algebras

Appendix A: Alphabetic Presentation of Superdivision Algebras

We extend here the alphabetic presentation (described in Sect. 2 for Clifford algebras) to the cases of \({\mathbb Z}_2\) and \({\mathbb Z}_2\times {\mathbb Z}_2\)-graded superdivision algebras.

Any homogeneous element g of a superdivision algebra is represented by an invertible real matrix which takes the form \(g=M\otimes N\), where the matrix M encodes the information of the grading, either \({\mathbb Z}_2\) or \({\mathbb Z}_2\times {\mathbb Z}_2\), while the matrix N encodes the information of the real, complex or quaternionic structure. The matrix size for M is

$$\begin{aligned}&{\mathbb Z}_2{\text {-grading}}: ~(2\times 2);\qquad \qquad {\mathbb Z}_2\times {\mathbb Z}_2{\text {-grading}}: ~(4\times 4).&\end{aligned}$$
(A.1)

The matrix size for N is

$$\begin{aligned}&{\mathbb R}{\text {-series}}: ~(1\times 1);\qquad \quad {\mathbb C}{\text {-series}}: ~(2\times 2);\qquad \quad {\mathbb H}{\text {-series}}: ~(4\times 4).&\nonumber \\ \end{aligned}$$
(A.2)

Concerning the \({\mathbb Z}_2\) grading, the even (odd) sector is denoted as \(M_0\) (\(M_1\)); the nonvanishing elements are accommodated according to

$$\begin{aligned} \left( \begin{array}{cc}*&{}0\\ 0&{}*\end{array}\right) \in M_0,&\qquad&\left( \begin{array}{cc}0&{}*\\ *&{}0\end{array}\right) \in M_1. \end{aligned}$$
(A.3)

The tensor products of the \({\mathbb Z}_2\)-graded matrices (A.3) produce the \({\mathbb Z}_2\times {\mathbb Z}_2\)-graded matrices \(M_{ij}\) (ij denotes the grading) according to

$$\begin{aligned} \left( \begin{array}{cc}*&{}0\\ 0&{}*\end{array}\right) \otimes \left( \begin{array}{cc}*&{}0\\ 0&{}*\end{array}\right) \mapsto \left( \begin{array}{cccc}*&{}0&{}0&{}0\\ 0&{}*&{}0&{}0\\ 0&{}0&{}*&{}0\\ 0&{}0&{}0&{}*\end{array}\right) \in M_{00},{} & {} \left( \begin{array}{cc}*&{}0\\ 0&{}*\end{array}\right) \otimes \left( \begin{array}{cc}0&{}*\\ *&{}0\end{array}\right) \mapsto \left( \begin{array}{cccc}0&{}*&{}0&{}0\\ *&{}0&{}0&{}0\\ 0&{}0&{}0&{}*\\ 0&{}0&{}*&{}0 \end{array}\right) \in M_{01},\nonumber \\ \left( \begin{array}{cc}0&{}*\\ *&{}0\end{array}\right) \otimes \left( \begin{array}{cc}*&{}0\\ 0&{}*\end{array}\right) \mapsto \left( \begin{array}{cccc}0&{}0&{}*&{}0\\ 0&{}0&{}0&{}*\\ *&{}0&{}0&{}0\\ 0&{}*&{}0&{}0 \end{array}\right) \in M_{10},{} & {} \left( \begin{array}{cc}0&{}*\\ *&{}0\end{array}\right) \otimes \left( \begin{array}{cc}0&{}*\\ *&{}0\end{array}\right) \mapsto \left( \begin{array}{cccc}0&{}0&{}0&{}*\\ 0&{}0&{}*&{}0\\ 0&{}*&{}0&{}0\\ *&{}0&{}0&{}0 \end{array}\right) \in M_{11}.\nonumber \\{} & {} \end{aligned}$$
(A.4)

In the \({\mathbb Z}_2\)-grading the \(M_0\), \(M_1\) sectors can be spanned by the matrices denoted by the letters, with the (1) identification, given by:

$$\begin{aligned} M_{0}: \quad I,~X;{} & {} M_{1}: \quad Y, ~A. \end{aligned}$$
(A.5)

In the \({\mathbb Z}_2\times {\mathbb Z}_2\)-grading the \(M_{00}, M_{01}, M_{10}, M_{11}\) sectors can be spanned by the matrices denoted by the 2-character words

$$\begin{aligned} M_{00}: \quad II,~IX,~XI, ~XX;{} & {} M_{01}: \quad IA, ~IY, ~XA, ~XY;\nonumber \\ M_{10}: \quad AI,~AX,~YI, ~YX;{} & {} M_{11}: \quad AA, ~AY, ~YA, ~YY. \end{aligned}$$
(A.6)

In Sect. 4 we showed that each one of the 7 inequivalent \({\mathbb Z}_2\)-graded superdivision algebras admits an alphabetic presentation in terms of equal-length words. Without loss of generality (up to similarity transformations) the even sector \({\mathbb D}_0^{[1]}\) can be expressed as

$$\begin{aligned}&{\mathbb R}{\text {-series}}: ~ I;\qquad ~{\mathbb C}{\text {-series}}: ~II,~IA;\qquad ~{\mathbb H}{\text {-series}}: ~III, ~IIA,~IAX,~ IAY.&\nonumber \\ \end{aligned}$$
(A.7)

The odd sectors \({\mathbb D}_1^{[1]}\) are presented in table (17) (for the \({\mathbb R}\)-series), table (18) (for the \({\mathbb C}\)-series), table (19) (for the \({\mathbb H}\)-series).

The alphabetic presentation is extended to the \({\mathbb Z}_2\times {\mathbb Z}_2\)-graded superdivision algebras by taking into account that:

(i) without loss of generality (up to similarity transformations) the even sector \({\mathbb D}_{00}^{[2]}\) can be expressed as

$$\begin{aligned}&{\mathbb R}{\text {-series}}: ~ II;\quad ~{\mathbb C}{\text {-series}}: ~III,~IIA;\quad ~{\mathbb H}{\text {-series}}: ~IIII, ~IIIA,~IIAX,~ IIAY;&\nonumber \\ \end{aligned}$$
(A.8)

(ii) each one of the three subalgebras \({\mathbb S}_{10}, {\mathbb S}_{01}, {\mathbb S}_{11}\subset {\mathbb D}^{[2]}\), given by the direct sums

$$\begin{aligned}&{\mathbb S}_{01}:= {\mathbb D}_{00}^{[2]}\oplus {\mathbb D}_{01}^{[2]},\qquad {\mathbb S}_{10}:= {\mathbb D}_{00}^{[2]}\oplus {\mathbb D}_{10}^{[2]},\qquad {\mathbb S}_{11}:= {\mathbb D}_{00}^{[2]}\oplus {\mathbb D}_{11}^{[2]},&\nonumber \\ \end{aligned}$$
(A.9)

is isomorphic to one (of the seven) \({\mathbb Z}_2\)-graded superdivision algebra;

(iii) the alphabetic presentation can be assumed for \({\mathbb S}_{01}\) and, since the second \({\mathbb Z}_2\) grading is independent from the first one, \({\mathbb S}_{10}\). The closure under multiplication for any \(g\in {\mathbb D}_{01}^{[2]},~ g'\in {\mathbb D}_{10}^{[2]}\) implies that \(gg'\in {\mathbb D}_{11}^{[2]}\) is alphabetically presented.

As discussed in Sect. 5, a \({\mathbb Z}_2\times {\mathbb Z}_2\)-graded superdivision algebra can be associated with its \({\mathbb Z}_2\)-graded superdivision algebra projections \({\mathbb S}_{01},~{\mathbb S}_{10},~{\mathbb S}_{11}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, Z., Toppan, F. Beyond the 10-fold Way: 13 Associative \( {\mathbb Z}_2\times {\mathbb Z}_2\)-Graded Superdivision Algebras. Adv. Appl. Clifford Algebras 33, 24 (2023). https://doi.org/10.1007/s00006-023-01263-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-023-01263-1

Navigation