Abstract
We consider the heterotic string on Calabi-Yau manifolds admitting a Strominger-Yau-Zaslow fibration. Upon reducing the system in the T3-directions, the Hermitian Yang-Mills conditions can then be reinterpreted as a complex flat connection on ℝ3 satisfying a certain co-closure condition. We give a number of abelian and non-abelian examples, and also compute the back-reaction on the geometry through the non-trivial α′-corrected heterotic Bianchi identity, which includes an important correction to the equations for the complex flat connection. These are all new local solutions to the Hull-Strominger system on T3 × ℝ3. We also propose a method for computing the spectrum of certain non-abelian models, in close analogy with the Morse-Witten complex of the abelian models.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].
A. Strominger, Superstrings with torsion, Nucl. Phys. B 274 (1986) 253 [INSPIRE].
C.M. Hull, Compactifications of the heterotic superstring, Phys. Lett. B 178 (1986) 357 [INSPIRE].
B.S. Acharya and E. Witten, Chiral fermions from manifolds of G2 holonomy, hep-th/0109152 [INSPIRE].
E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [INSPIRE].
A. Strominger, S.-T. Yau and E. Zaslow, Mirror symmetry is T duality, Nucl. Phys. B 479 (1996) 243 [hep-th/9606040] [INSPIRE].
S. Donaldson, Adiabatic limits of co-associative Kovalev-Lefschetz fibrations, in Algebra, geometry, and physics in the 21st century, D. Auroux et al. eds., Springer, Germany (2017).
B.S. Acharya, A moduli fixing mechanism in M-theory, hep-th/0212294 [INSPIRE].
T. Pantev and M. Wijnholt, Hitchin’s equations and M-theory phenomenology, J. Geom. Phys. 61 (2011) 1223 [arXiv:0905.1968] [INSPIRE].
A.P. Braun, S. Cizel, M. Hübner and S. Schäfer-Nameki, Higgs bundles for M-theory on G2-manifolds, JHEP 03 (2019) 199 [arXiv:1812.06072] [INSPIRE].
A. Kovalev, Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math. 565 (2003) 125.
A. Corti, M. Haskins, J. Nordström and T. Pacini, G2-manifolds and associative submanifolds via semi-Fano 3-folds, Duke Math. J. 164 (2015) 1971 [arXiv:1207.4470] [INSPIRE].
A. Corti, M. Haskins, J. Nordström and T. Pacini, Asymptotically cylindrical Calabi-Yau 3-folds from weak Fano 3-folds, Geom. Topol. 17 (2013) 1955.
M. Hubner, Local G2-manifolds, Higgs bundles and a colored quantum mechanics, arXiv:2009.07136 [INSPIRE].
R. Barbosa, M. Cvetič, J.J. Heckman, C. Lawrie, E. Torres and G. Zoccarato, T-branes and G2 backgrounds, Phys. Rev. D 101 (2020) 026015 [arXiv:1906.02212] [INSPIRE].
S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-branes and monodromy, JHEP 07 (2011) 030 [arXiv:1010.5780] [INSPIRE].
N.J. Hitchin, Stable forms and special metrics, math/0107101 [INSPIRE].
J.P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic torsion, Phys. Rev. D 69 (2004) 086002 [hep-th/0302158] [INSPIRE].
C.M. Hull, Anomalies, ambiguities and superstrings, Phys. Lett. B 167 (1986) 51 [INSPIRE].
C.M. Hull and P.K. Townsend, World sheet supersymmetry and anomaly cancellation in the heterotic string, Phys. Lett. B 178 (1986) 187 [INSPIRE].
A. Sen, (2, 0) supersymmetry and space-time supersymmetry in the heterotic string theory, Nucl. Phys. B 278 (1986) 289 [INSPIRE].
S. Ivanov, Heterotic supersymmetry, anomaly cancellation and equations of motion, Phys. Lett. B 685 (2010) 190 [arXiv:0908.2927] [INSPIRE].
D. Martelli and J. Sparks, Non-Kähler heterotic rotations, Adv. Theor. Math. Phys. 15 (2011) 131 [arXiv:1010.4031] [INSPIRE].
X. de la Ossa and E.E. Svanes, Connections, field redefinitions and heterotic supergravity, JHEP 12 (2014) 008 [arXiv:1409.3347] [INSPIRE].
M.B. Green and J.H. Schwarz, Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett. B 149 (1984) 117 [INSPIRE].
S.K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 50 (1985) 1.
K. Uhlenbeck and S.T. Yau, On the existence of Hermitian-Yang-mills connections in stable vector bundles, Commun. Pure Appl. Math. 39 (1986) S257.
G. t Hooft, Magnetic monopoles in unified theories, Nucl. Phys. B 79 (1974) 276 [CERN-TH-1876].
A. M. Polyakov, Particle spectrum in quantum field theory, in 30 years of the landau institute — Selected papers, I.M. Khalatnikov ed., World Scientific, Singapore (1996).
B.S. Acharya, M theory, Joyce orbifolds and superYang-Mills, Adv. Theor. Math. Phys. 3 (1999) 227 [hep-th/9812205] [INSPIRE].
K. Corlette et al., Flat g-bundles with canonical metrics, J. Diff. Geom. 28 (1988) 361.
M. Gagliardo and K. Uhlenbeck, Geometric aspects of the Kapustin-Witten equations, J. Fix. Point Theor. Appl. 11 (2012) 185.
R. Barbosa, Harmonic Higgs bundles and coassociative ALE fibrations, arXiv:1910.10742 [INSPIRE].
L. Carlevaro, D. Israel and P.M. Petropoulos, Double-scaling limit of heterotic bundles and dynamical deformation in CFT, Nucl. Phys. B 827 (2010) 503 [arXiv:0812.3391] [INSPIRE].
L. Carlevaro and D. Israel, Heterotic resolved conifolds with torsion, from supergravity to CFT, JHEP 01 (2010) 083 [arXiv:0910.3190] [INSPIRE].
N. Halmagyi, D. Israel and E.E. Svanes, The Abelian heterotic conifold, JHEP 07 (2016) 029 [arXiv:1601.07561] [INSPIRE].
N. Halmagyi, D. Israel, M. Sarkis and E.E. Svanes, Heterotic Hyper-Kähler flux backgrounds, JHEP 08 (2017) 138 [arXiv:1706.01725] [INSPIRE].
L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing the complex structure in heterotic Calabi-Yau vacua, JHEP 02 (2011) 088 [arXiv:1010.0255] [INSPIRE].
L.B. Anderson, J. Gray and E. Sharpe, Algebroids, heterotic moduli spaces and the Strominger system, JHEP 07 (2014) 037 [arXiv:1402.1532] [INSPIRE].
X. de la Ossa and E.E. Svanes, Holomorphic bundles and the moduli space of N = 1 supersymmetric heterotic compactifications, JHEP 10 (2014) 123 [arXiv:1402.1725] [INSPIRE].
M. Garcia-Fernandez, R. Rubio and C. Tipler, Infinitesimal moduli for the Strominger system and Killing spinors in generalized geometry, Math. Ann. 369 (2017) 2 [arXiv:1503.07562] [INSPIRE].
X. de la Ossa, E. Hardy and E.E. Svanes, The heterotic superpotential and moduli, JHEP 01 (2016) 049 [arXiv:1509.08724] [INSPIRE].
P. Candelas, X. de la Ossa and J. McOrist, A metric for heterotic moduli, Commun. Math. Phys. 356 (2017) 567 [arXiv:1605.05256] [INSPIRE].
J. McOrist, On the effective field theory of heterotic vacua, Lett. Math. Phys. 108 (2018) 1031 [arXiv:1606.05221] [INSPIRE].
A. Ashmore, X. De La Ossa, R. Minasian, C. Strickland-Constable and E.E. Svanes, Finite deformations from a heterotic superpotential: holomorphic Chern-Simons and an L∞ algebra, JHEP 10 (2018) 179 [arXiv:1806.08367] [INSPIRE].
M. Garcia-Fernandez, R. Rubio, C. Shahbazi and C. Tipler, Canonical metrics on holomorphic Courant algebroids, arXiv:1803.01873 [INSPIRE].
M. Garcia-Fernandez, R. Rubio and C. Tipler, Holomorphic string algebroids, Trans. Am. Math. Soc. 373 (2020) 7347 [arXiv:1807.10329] [INSPIRE].
J. McOrist and R. Sisca, Small gauge transformations and universal geometry in heterotic theories, SIGMA 16 (2020) 126 [arXiv:1904.07578] [INSPIRE].
A. Ashmore, C. Strickland-Constable, D. Tennyson and D. Waldram, Heterotic backgrounds via generalised geometry: moment maps and moduli, JHEP 11 (2020) 071 [arXiv:1912.09981] [INSPIRE].
M. Garcia-Fernandez, R. Rubio and C. Tipler, Gauge theory for string algebroids, arXiv:2004.11399 [INSPIRE].
M.K. Prasad and C.M. Sommerfield, An exact classical solution for the ’t Hooft monopole and the Julia-Zee dyon, Phys. Rev. Lett. 35 (1975) 760 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2010.07438
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Acharya, B.S., Kinsella, A. & Svanes, E.E. T 3-invariant heterotic Hull-Strominger solutions. J. High Energ. Phys. 2021, 197 (2021). https://doi.org/10.1007/JHEP01(2021)197
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2021)197