Abstract
Confining dark sectors with pseudo-conformal dynamics produce SUEPs, or Soft Unclustered Energy Patterns, at colliders: isotropic dark hadrons with soft and democratic energies. We target the experimental nightmare scenario, SUEPs in exotic Higgs decays, where all dark hadrons decay promptly to SM hadrons. First, we identify three promising observables: the charged particle multiplicity, the event ring isotropy, and the matrix of geometric distances between charged tracks. Their patterns can be exploited through a cut-and-count search, supervised machine learning, or an unsupervised autoencoder. We find that the HL-LHC will probe exotic Higgs branching ratios at the per-cent level, even without a detailed knowledge of the signal features. Our techniques can be applied to other SUEP searches, especially the unsupervised strategy, which is independent of overly specific model assumptions and the corresponding precision simulations.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].
M.J. Strassler, On the phenomenology of hidden valleys with heavy flavor, arXiv:0806.2385 [INSPIRE].
Z. Chacko, H.-S. Goh and R. Harnik, The twin Higgs: natural electroweak breaking from mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [INSPIRE].
R.M. Schabinger and J.D. Wells, A Minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the large hadron collider, Phys. Rev. D 72 (2005) 093007 [hep-ph/0509209] [INSPIRE].
B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].
J.R. Espinosa and M. Quirós, Novel effects in electroweak breaking from a hidden sector, Phys. Rev. D 76 (2007) 076004 [hep-ph/0701145] [INSPIRE].
J. March-Russell, S.M. West, D. Cumberbatch and D. Hooper, Heavy dark matter through the Higgs portal, JHEP 07 (2008) 058 [arXiv:0801.3440] [INSPIRE].
J. Alimena et al., Searching for long-lived particles beyond the standard model at the Large Hadron Collider, J. Phys. G 47 (2020) 090501 [arXiv:1903.04497] [INSPIRE].
D. Curtin and S. Gryba, Twin Higgs portal dark matter, JHEP 08 (2021) 009 [arXiv:2101.11019] [INSPIRE].
B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].
S.A. Abel, M.D. Goodsell, J. Jaeckel, V.V. Khoze and A. Ringwald, Kinetic mixing of the photon with hidden U(1) s in string phenomenology, JHEP 07 (2008) 124 [arXiv:0803.1449] [INSPIRE].
B. Batell, M. Pospelov and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79 (2009) 115008 [arXiv:0903.0363] [INSPIRE].
J. Jaeckel and A. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].
R. Foot, Mirror dark matter: cosmology, galaxy structure and direct detection, Int. J. Mod. Phys. A 29 (2014) 1430013 [arXiv:1401.3965] [INSPIRE].
D. Feldman, Z. Liu and P. Nath, The Stueckelberg Z-prime extension with kinetic mixing and milli-charged dark matter from the hidden sector, Phys. Rev. D 75 (2007) 115001 [hep-ph/0702123] [INSPIRE].
M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].
E. Dudas, L. Heurtier, Y. Mambrini and B. Zaldivar, Extra U(1), effective operators, anomalies and dark matter, JHEP 11 (2013) 083 [arXiv:1307.0005] [INSPIRE].
H. An, X. Ji and L.-T. Wang, Light dark matter and Z′ dark force at colliders, JHEP 07 (2012) 182 [arXiv:1202.2894] [INSPIRE].
G.D. Kribs, A. Martin, B. Ostdiek and T. Tong, Dark mesons at the LHC, JHEP 07 (2019) 133 [arXiv:1809.10184] [INSPIRE].
S. Knapen, J. Shelton and D. Xu, Perturbative benchmark models for a dark shower search program, Phys. Rev. D 103 (2021) 115013 [arXiv:2103.01238] [INSPIRE].
M. Cvetič, P. Langacker and G. Shiu, Phenomenology of a three family standard like string model, Phys. Rev. D 66 (2002) 066004 [hep-ph/0205252] [INSPIRE].
T. Hur, D.-W. Jung, P. Ko and J.Y. Lee, Electroweak symmetry breaking and cold dark matter from strongly interacting hidden sector, Phys. Lett. B 696 (2011) 262 [arXiv:0709.1218] [INSPIRE].
Y. Bai and P. Schwaller, Scale of dark QCD, Phys. Rev. D 89 (2014) 063522 [arXiv:1306.4676] [INSPIRE].
Y. Grossman and D.J. Robinson, Composite Dirac neutrinos, JHEP 01 (2011) 132 [arXiv:1009.2781] [INSPIRE].
T. Han, Z. Si, K.M. Zurek and M.J. Strassler, Phenomenology of hidden valleys at hadron colliders, JHEP 07 (2008) 008 [arXiv:0712.2041] [INSPIRE].
M. Buschmann, J. Kopp, J. Liu and P.A.N. Machado, Lepton jets from radiating dark matter, JHEP 07 (2015) 045 [arXiv:1505.07459] [INSPIRE].
N. Arkani-Hamed and N. Weiner, LHC signals for a SuperUnified Theory of dark matter, JHEP 12 (2008) 104 [arXiv:0810.0714] [INSPIRE].
S.D. Ellis, T.S. Roy and J. Scholtz, Phenomenology of photon-jets, Phys. Rev. D 87 (2013) 014015 [arXiv:1210.3657] [INSPIRE].
N. Toro and I. Yavin, Multiphotons and photon jets from new heavy vector bosons, Phys. Rev. D 86 (2012) 055005 [arXiv:1202.6377] [INSPIRE].
ATLAS collaboration, A search for pairs of highly collimated photon-jets in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 99 (2019) 012008 [arXiv:1808.10515] [INSPIRE].
T. Cohen, M. Lisanti and H.K. Lou, Semivisible Jets: dark matter undercover at the LHC, Phys. Rev. Lett. 115 (2015) 171804 [arXiv:1503.00009] [INSPIRE].
G. Burdman and G. Lichtenstein, Displaced vertices from hidden glue, JHEP 08 (2018) 146 [arXiv:1807.03801] [INSPIRE].
P. Schwaller, D. Stolarski and A. Weiler, Emerging jets, JHEP 05 (2015) 059 [arXiv:1502.05409] [INSPIRE].
T. Cohen, M. Lisanti, H.K. Lou and S. Mishra-Sharma, LHC searches for dark sector showers, JHEP 11 (2017) 196 [arXiv:1707.05326] [INSPIRE].
T. Cohen, J. Doss and M. Freytsis, Jet substructure from dark sector showers, JHEP 09 (2020) 118 [arXiv:2004.00631] [INSPIRE].
M.J. Strassler, Why unparticle models with mass gaps are examples of hidden valleys, arXiv:0801.0629 [INSPIRE].
S. Knapen, S. Pagan Griso, M. Papucci and D.J. Robinson, Triggering soft bombs at the LHC, JHEP 08 (2017) 076 [arXiv:1612.00850] [INSPIRE].
C. Cesarotti and J. Thaler, A robust measure of event isotropy at colliders, JHEP 08 (2020) 084 [arXiv:2004.06125] [INSPIRE].
D. Rumelhart, G. Hinton and R. Williams, Parallel distributed processing, volume 1, MIT Press, U.S.A. (1986), chapter 8.
P. Asadi, M.R. Buckley, A. DiFranzo, A. Monteux and D. Shih, Digging deeper for new physics in the LHC data, JHEP 11 (2017) 194 [arXiv:1707.05783] [INSPIRE].
E.M. Metodiev, B. Nachman and J. Thaler, Classification without labels: learning from mixed samples in high energy physics, JHEP 10 (2017) 174 [arXiv:1708.02949] [INSPIRE].
A. Andreassen, I. Feige, C. Frye and M.D. Schwartz, JUNIPR: a framework for unsupervised machine learning in particle physics, Eur. Phys. J. C 79 (2019) 102 [arXiv:1804.09720] [INSPIRE].
J.H. Collins, K. Howe and B. Nachman, Anomaly detection for resonant new physics with machine learning, Phys. Rev. Lett. 121 (2018) 241803 [arXiv:1805.02664] [INSPIRE].
A. De Simone and T. Jacques, Guiding new physics searches with unsupervised learning, Eur. Phys. J. C 79 (2019) 289 [arXiv:1807.06038] [INSPIRE].
T. Heimel, G. Kasieczka, T. Plehn and J.M. Thompson, QCD or what?, SciPost Phys. 6 (2019) 030 [arXiv:1808.08979] [INSPIRE].
M. Farina, Y. Nakai and D. Shih, Searching for new physics with deep autoencoders, Phys. Rev. D 101 (2020) 075021 [arXiv:1808.08992] [INSPIRE].
T.S. Roy and A.H. Vijay, A robust anomaly finder based on autoencoders, arXiv:1903.02032 [INSPIRE].
T. Cheng, J.-F. Arguin, J. Leissner-Martin, J. Pilette and T. Golling, Variational autoencoders for anomalous jet tagging, arXiv:2007.01850 [INSPIRE].
B. Nachman and D. Shih, Anomaly detection with density estimation, Phys. Rev. D 101 (2020) 075042 [arXiv:2001.04990] [INSPIRE].
M.A. Md Ali, N. Badrud’din, H. Abdullah and F. Kemi, Alternate methods for anomaly detection in high-energy physics via semi-supervised learning, Int. J. Mod. Phys. A 35 (2020) 2050131 [INSPIRE].
B. Bortolato, B.M. Dillon, J.F. Kamenik and A. Smolkovič, Bump Hunting in Latent Space, arXiv:2103.06595 [INSPIRE].
B.M. Dillon, T. Plehn, C. Sauer and P. Sorrenson, Better latent spaces for better autoencoders, SciPost Phys. 11 (2021) 061 [arXiv:2104.08291] [INSPIRE].
T. Finke, M. Krämer, A. Morandini, A. Mück and I. Oleksiyuk, Autoencoders for unsupervised anomaly detection in high energy physics, JHEP 06 (2021) 161 [arXiv:2104.09051] [INSPIRE].
G. Kasieczka et al., The LHC olympics 2020: a community challenge for anomaly detection in high energy physics, arXiv:2101.08320 [INSPIRE].
T. Aarrestad et al., The dark machines anomaly score challenge: benchmark data and model independent event classification for the Large Hadron Collider, arXiv:2105.14027 [INSPIRE].
O. Cerri, T.Q. Nguyen, M. Pierini, M. Spiropulu and J.-R. Vlimant, Variational autoencoders for new physics mining at the Large Hadron Collider, JHEP 05 (2019) 036 [arXiv:1811.10276] [INSPIRE].
D.E. Morrissey, T. Plehn and T.M.P. Tait, Physics searches at the LHC, Phys. Rept. 515 (2012) 1 [arXiv:0912.3259] [INSPIRE].
N. Arkani-Hamed, S. Dimopoulos and S. Kachru, Predictive landscapes and new physics at a TeV, hep-th/0501082 [INSPIRE].
N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].
L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].
G. Elor, N.L. Rodd and T.R. Slatyer, Multistep cascade annihilations of dark matter and the Galactic Center excess, Phys. Rev. D 91 (2015) 103531 [arXiv:1503.01773] [INSPIRE].
C. Cesarotti, M. Reece and M.J. Strassler, Spheres to jets: tuning event shapes with 5d simplified models, JHEP 05 (2021) 096 [arXiv:2009.08981] [INSPIRE].
A. Costantino, S. Fichet and P. Tanedo, Effective field theory in AdS: continuum regime, soft bombs, and IR emergence, Phys. Rev. D 102 (2020) 115038 [arXiv:2002.12335] [INSPIRE].
S.C. Park, Black holes and the LHC: a review, Prog. Part. Nucl. Phys. 67 (2012) 617 [arXiv:1203.4683] [INSPIRE].
R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, volume 8, Cambridge University Press, Cambridge U.K. (2011).
Y. Hatta and T. Matsuo, Jet fragmentation and gauge/string duality, Phys. Lett. B 670 (2008) 150 [arXiv:0804.4733] [INSPIRE].
E. Fermi, High-energy nuclear events, Prog. Theor. Phys. 5 (1950) 570 [INSPIRE].
R. Hagedorn, Statistical thermodynamics of strong interactions at high-energies, Nuovo Cim. Suppl. 3 (1965) 147 [INSPIRE].
J.D. Bjorken and S.J. Brodsky, Statistical model for electron-positron annihilation into hadrons, Phys. Rev. D 1 (1970) 1416 [INSPIRE].
P. Blanchard, S. Fortunato and H. Satz, The hagedorn temperature and partition thermodynamics, Eur. Phys. J. C 34 (2004) 361 [hep-ph/0401103] [INSPIRE].
F. Becattini and G. Passaleva, Statistical hadronization model and transverse momentum spectra of hadrons in high-energy collisions, Eur. Phys. J. C 23 (2002) 551 [hep-ph/0110312] [INSPIRE].
J. Cleymans, The thermal model at the Large Hadron Collider, Acta Phys. Polon. B 43 (2012) 563 [arXiv:1203.5640] [INSPIRE].
F. Becattini, P. Castorina, J. Manninen and H. Satz, The thermal production of strange and non-strange hadrons in e+ e− collisions, Eur. Phys. J. C 56 (2008) 493 [arXiv:0805.0964] [INSPIRE].
F. Becattini, P. Castorina, A. Milov and H. Satz, A comparative analysis of statistical hadron production, Eur. Phys. J. C 66 (2010) 377 [arXiv:0911.3026] [INSPIRE].
F. Becattini, P. Castorina, A. Milov and H. Satz, Predictions of hadron abundances in pp collisions at the LHC, J. Phys. G 38 (2011) 025002 [arXiv:0912.2855] [INSPIRE].
L. Ferroni and F. Becattini, Statistical hadronization with exclusive channels in e+ e− annihilation, Eur. Phys. J. C 71 (2011) 1824 [arXiv:1109.5185] [INSPIRE].
E. Bernreuther, F. Kahlhoefer, M. Krämer and P. Tunney, Strongly interacting dark sectors in the early Universe and at the LHC through a simplified portal, JHEP 01 (2020) 162 [arXiv:1907.04346] [INSPIRE].
D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, Phys. Rev. D 90 (2014) 075004 [arXiv:1312.4992] [INSPIRE].
ATLAS collaboration, Search for invisible Higgs boson decays in vector boson fusion at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 793 (2019) 499 [arXiv:1809.06682] [INSPIRE].
ATLAS collaboration, Combination of searches for invisible Higgs boson decays with the ATLAS experiment, Phys. Rev. Lett. 122 (2019) 231801 [arXiv:1904.05105] [INSPIRE].
ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb−1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, Phys. Rev. D 101 (2020) 012002 [arXiv:1909.02845] [INSPIRE].
CMS collaboration, Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at \( \sqrt{s} \) = 13,TeV, Phys. Lett. B 793 (2019) 520 [arXiv:1809.05937] [INSPIRE].
A. Biekoetter, T. Corbett and T. Plehn, The Gauge-Higgs Legacy of the LHC Run II, SciPost Phys. 6 (2019) 064 [arXiv:1812.07587] [INSPIRE].
A. Pierce, B. Shakya, Y. Tsai and Y. Zhao, Searching for confining hidden valleys at LHCb, ATLAS, and CMS, Phys. Rev. D 97 (2018) 095033 [arXiv:1708.05389] [INSPIRE].
ATLAS collaboration, Search for Higgs boson decays into two new low-mass spin-0 particles in the 4b channel with the ATLAS detector using pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 102 (2020) 112006 [arXiv:2005.12236] [INSPIRE].
M. Park and M. Zhang, Tagging a jet from a dark sector with Jet-substructures at colliders, Phys. Rev. D 100 (2019) 115009 [arXiv:1712.09279] [INSPIRE].
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
M. Cepeda et al., Report from working group 2: Higgs physics at the HL-LHC and HE-LHC, CERN Yellow Rep. Monogr. 7 (2019) 221 [arXiv:1902.00134] [INSPIRE].
Y. Wang, Y. Sun, Z. Liu, S.E. Sarma, M.M. Bronstein and J.M. Solomon, Dynamic graph CNN for learning on point clouds, arXiv:1801.07829 [INSPIRE].
E. Bernreuther, T. Finke, F. Kahlhoefer, M. Krämer and A. Mück, Casting a graph net to catch dark showers, SciPost Phys. 10 (2021).
H. Qu and L. Gouskos, ParticleNet: jet tagging via particle clouds, Phys. Rev. D 101 (2020) 056019 [arXiv:1902.08570] [INSPIRE].
J.A. Aguilar-Saavedra, J.H. Collins and R.K. Mishra, A generic anti-QCD jet tagger, JHEP 11 (2017) 163 [arXiv:1709.01087] [INSPIRE].
O. Knapp, O. Cerri, G. Dissertori, T.Q. Nguyen, M. Pierini and J.-R. Vlimant, Adversarially learned anomaly detection on CMS open data: re-discovering the top quark, Eur. Phys. J. Plus 136 (2021) 236 [arXiv:2005.01598] [INSPIRE].
P. Baldi, K. Cranmer, T. Faucett, P. Sadowski and D. Whiteson, Parameterized neural networks for high-energy physics, Eur. Phys. J. C 76 (2016) 235 [arXiv:1601.07913] [INSPIRE].
G. Louppe, M. Kagan and K. Cranmer, Learning to pivot with adversarial networks, arXiv:1611.01046 [INSPIRE].
CMS collaboration, A deep neural network to search for new long-lived particles decaying to jets, Mach. Learn. Sci. Tech. 1 (2020) 035012 [arXiv:1912.12238] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
D.P. Kingma and M. Welling, Auto-encoding variational Bayes, arXiv:1312.6114 [INSPIRE].
M. Ponce et al., Deploying a top-100 supercomputer for large parallel workloads: the Niagara supercomputer, in the proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (Learning) (PEARC’19), July 28–August 1, Chicago, U.S.A. (2019).
C. Loken et al., SciNet: lessons learned from building a power-efficient top-20 system and data centre. J. Phys.: Conf. Ser. 256 (2010) 012026.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2107.12379
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Barron, J., Curtin, D., Kasieczka, G. et al. Unsupervised hadronic SUEP at the LHC. J. High Energ. Phys. 2021, 129 (2021). https://doi.org/10.1007/JHEP12(2021)129
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2021)129