Skip to main content
Log in

Light dark matter and Z′ dark force at colliders

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Light DM, < 10 GeV, with sizeable direct detection rate is an interesting and less explored scenario. Collider searches can be very powerful, such as through the channel in which a pair of dark matter particle is produced in association with a jet. It is a generic possibility that the mediator of the interaction between dark matter and the nucleus will also be accessible at the Tevatron and the LHC. Therefore, collider search of the mediator can provide a more comprehensive probe of the dark matter and its interactions. In this article, to demonstrate the complementarity of these two approaches, we focus on the possibility of the mediator being a new U(1)′ gauge boson, which is probably the simplest model which allows a large direct detection cross section for a light dark matter candidate. We combine searches in the monojet + MET channel and dijet resonance search for the mediator. We find that for the mass of Z′ between 250 GeV and 4 TeV, resonance searches at the colliders provide stronger constraints on this model than the monojet + MET searches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DAMA collaboration, R. Bernabei et al., First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C 56 (2008) 333 [arXiv:0804.2741] [INSPIRE].

    Article  ADS  Google Scholar 

  2. CDMS-II collaboration, Z. Ahmed et al., Results from a low-energy analysis of the CDMS II germanium data, Phys. Rev. Lett. 106 (2011) 131302 [arXiv:1011.2482] [INSPIRE].

    Article  ADS  Google Scholar 

  3. CDMS collaboration, D. Akerib et al., A low-threshold analysis of CDMS shallow-site data, Phys. Rev. D 82 (2010) 122004 [arXiv:1010.4290] [INSPIRE].

    ADS  Google Scholar 

  4. XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].

    Article  ADS  Google Scholar 

  5. C. Aalseth et al., Search for an annual modulation in a p-type point contact germanium dark matter detector, Phys. Rev. Lett. 107 (2011) 141301 [arXiv:1106.0650] [INSPIRE].

    Article  ADS  Google Scholar 

  6. G. Angloher et al., Results from 730 kg days of the CRESST-II dark matter search, Eur. Phys. J. C 72 (2012) 1971 [arXiv:1109.0702] [INSPIRE].

    Article  ADS  Google Scholar 

  7. H. Goldberg, Constraint on the photino mass from cosmology, Phys. Rev. Lett. 50 (1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE].

    Article  ADS  Google Scholar 

  8. J.R. Ellis, J. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric relics from the Big Bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].

    Article  ADS  Google Scholar 

  9. H.-C. Cheng, J.L. Feng and K.T. Matchev, Kaluza-Klein dark matter, Phys. Rev. Lett. 89 (2002) 211301 [hep-ph/0207125] [INSPIRE].

    Article  ADS  Google Scholar 

  10. G. Servant and T.M. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A. Bottino, F. Donato, N. Fornengo and S. Scopel, Lower bound on the neutralino mass from new data on CMB and implications for relic neutralinos, Phys. Rev. D 68 (2003) 043506 [hep-ph/0304080] [INSPIRE].

    ADS  Google Scholar 

  12. A. Bottino, F. Donato, N. Fornengo and S. Scopel, Light neutralinos and WIMP direct searches, Phys. Rev. D 69 (2004) 037302 [hep-ph/0307303] [INSPIRE].

    ADS  Google Scholar 

  13. J.L. Feng and J. Kumar, The WIMPless miracle: dark-matter particles without weak-scale masses or weak interactions, Phys. Rev. Lett. 101 (2008) 231301 [arXiv:0803.4196] [INSPIRE].

    Article  ADS  Google Scholar 

  14. F. Petriello and K.M. Zurek, DAMA and WIMP dark matter, JHEP 09 (2008) 047 [arXiv:0806.3989] [INSPIRE].

    Article  ADS  Google Scholar 

  15. J.L. Feng, J. Kumar and L.E. Strigari, Explaining the DAMA signal with WIMPless dark matter, Phys. Lett. B 670 (2008) 37 [arXiv:0806.3746] [INSPIRE].

    ADS  Google Scholar 

  16. K.M. Zurek, Multi-component dark matter, Phys. Rev. D 79 (2009) 115002 [arXiv:0811.4429] [INSPIRE].

    ADS  Google Scholar 

  17. D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric dark matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].

    ADS  Google Scholar 

  18. D. Feldman, Z. Liu and P. Nath, Low mass neutralino dark matter in the MSSM with constraints from B s  → μ + μ and Higgs search limits, Phys. Rev. D 81 (2010) 117701 [arXiv:1003.0437] [INSPIRE].

    ADS  Google Scholar 

  19. A.L. Fitzpatrick, D. Hooper and K.M. Zurek, Implications of CoGeNT and DAMA for light WIMP dark matter, Phys. Rev. D 81 (2010) 115005 [arXiv:1003.0014] [INSPIRE].

    ADS  Google Scholar 

  20. E. Kuflik, A. Pierce and K.M. Zurek, Light neutralinos with large scattering cross sections in the minimal supersymmetric standard model, Phys. Rev. D 81 (2010) 111701 [arXiv:1003.0682] [INSPIRE].

    ADS  Google Scholar 

  21. S. Andreas, C. Arina, T. Hambye, F.-S. Ling and M.H. Tytgat, A light scalar WIMP through the Higgs portal and CoGeNT, Phys. Rev. D 82 (2010) 043522 [arXiv:1003.2595] [INSPIRE].

    ADS  Google Scholar 

  22. P.W. Graham, R. Harnik, S. Rajendran and P. Saraswat, Exothermic dark matter, Phys. Rev. D 82 (2010) 063512 [arXiv:1004.0937] [INSPIRE].

    ADS  Google Scholar 

  23. S. Chang, J. Liu, A. Pierce, N. Weiner and I. Yavin, CoGeNT interpretations, JCAP 08 (2010) 018 [arXiv:1004.0697] [INSPIRE].

    Article  ADS  Google Scholar 

  24. R. Essig, J. Kaplan, P. Schuster and N. Toro, On the origin of light dark matter species, submitted to Phys. Rev. D [arXiv:1004.0691] [INSPIRE].

  25. H. An, S.-L. Chen, R.N. Mohapatra, S. Nussinov and Y. Zhang, Energy dependence of direct detection cross section for asymmetric mirror dark matter, Phys. Rev. D 82 (2010) 023533 [arXiv:1004.3296] [INSPIRE].

    ADS  Google Scholar 

  26. T. Cohen, D.J. Phalen, A. Pierce and K.M. Zurek, Asymmetric dark matter from a GeV hidden sector, Phys. Rev. D 82 (2010) 056001 [arXiv:1005.1655] [INSPIRE].

    ADS  Google Scholar 

  27. D. Das and U. Ellwanger, Light dark matter in the NMSSM: upper bounds on direct detection cross sections, JHEP 09 (2010) 085 [arXiv:1007.1151] [INSPIRE].

    Article  ADS  Google Scholar 

  28. D. Hooper, J. Collar, J. Hall, D. McKinsey and C. Kelso, A consistent dark matter interpretation for CoGeNT and DAMA/LIBRA, Phys. Rev. D 82 (2010) 123509 [arXiv:1007.1005] [INSPIRE].

    ADS  Google Scholar 

  29. A.L. Fitzpatrick and K.M. Zurek, Dark moments and the DAMA-CoGeNT puzzle, Phys. Rev. D 82 (2010) 075004 [arXiv:1007.5325] [INSPIRE].

    ADS  Google Scholar 

  30. G. Bélanger, M. Kakizaki, E. Park, S. Kraml and A. Pukhov, Light mixed sneutrinos as thermal dark matter, JCAP 11 (2010) 017 [arXiv:1008.0580] [INSPIRE].

    Article  Google Scholar 

  31. R. Foot, A comprehensive analysis of the dark matter direct detection experiments in the mirror dark matter framework, Phys. Rev. D 82 (2010) 095001 [arXiv:1008.0685] [INSPIRE].

    ADS  Google Scholar 

  32. Z. Kang, T. Li, T. Liu, C. Tong and J.M. Yang, Light dark matter from the U(1) X sector in the NMSSM with gauge mediation, JCAP 01 (2011) 028 [arXiv:1008.5243] [INSPIRE].

    Article  ADS  Google Scholar 

  33. V. Barger, Y. Gao, M. McCaskey and G. Shaughnessy, Light Higgs boson, light dark matter and γ rays, Phys. Rev. D 82 (2010) 095011 [arXiv:1008.1796] [INSPIRE].

    ADS  Google Scholar 

  34. A.V. Belikov, J.F. Gunion, D. Hooper and T.M. Tait, CoGeNT, DAMA and light neutralino dark matter, Phys. Lett. B 705 (2011) 82 [arXiv:1009.0549] [INSPIRE].

    ADS  Google Scholar 

  35. J.F. Gunion, A.V. Belikov and D. Hooper, CoGeNT, DAMA and neutralino dark matter in the next-to-minimal supersymmetric standard model, arXiv:1009.2555 [INSPIRE].

  36. P. Draper, T. Liu, C.E. Wagner, L.-T. Wang and H. Zhang, Dark light Higgs, Phys. Rev. Lett. 106 (2011) 121805 [arXiv:1009.3963] [INSPIRE].

    Article  ADS  Google Scholar 

  37. D.A. Vasquez, G. Bélanger, C. Boehm, A. Pukhov and J. Silk, Can neutralinos in the MSSM and NMSSM scenarios still be light?, Phys. Rev. D 82 (2010) 115027 [arXiv:1009.4380] [INSPIRE].

    ADS  Google Scholar 

  38. N. Fornengo, S. Scopel and A. Bottino, Discussing direct search of dark matter particles in the minimal supersymmetric extension of the standard model with light neutralinos, Phys. Rev. D 83 (2011) 015001 [arXiv:1011.4743] [INSPIRE].

    ADS  Google Scholar 

  39. T. Schwetz, Direct detection data and possible hints for low-mass WIMPs, PoS(IDM2010)070 [arXiv:1011.5432] [INSPIRE].

  40. B. Dutta and J. Kumar, Asymmetric dark matter from hidden sector baryogenesis, Phys. Lett. B 699 (2011) 364 [arXiv:1012.1341] [INSPIRE].

    ADS  Google Scholar 

  41. P. Ko and Y. Omura, Supersymmetric U(1) B  × U(1) L model with leptophilic and leptophobic cold dark matters, Phys. Lett. B 701 (2011) 363 [arXiv:1012.4679] [INSPIRE].

    ADS  Google Scholar 

  42. J.L. Feng, J. Kumar, D. Marfatia and D. Sanford, Isospin-violating dark matter, Phys. Lett. B 703 (2011) 124 [arXiv:1102.4331] [INSPIRE].

    ADS  Google Scholar 

  43. P. Ko, Y. Omura and C. Yu, Dijet resonance from leptophobic Zand light baryonic cold dark matter, Phys. Lett. B 710 (2012) 197 [arXiv:1104.4066] [INSPIRE].

    ADS  Google Scholar 

  44. P. Gondolo, P. Ko and Y. Omura, Light dark matter in leptophobic Zmodels, Phys. Rev. D 85 (2012) 035022 [arXiv:1106.0885] [INSPIRE].

    ADS  Google Scholar 

  45. Y. Cai, X.-G. He and B. Ren, Low mass dark matter and invisible Higgs width in darkon models, Phys. Rev. D 83 (2011) 083524 [arXiv:1102.1522] [INSPIRE].

    ADS  Google Scholar 

  46. J.-J. Cao et al., Light dark matter in NMSSM and implication on Higgs phenomenology, Phys. Lett. B 703 (2011) 292 [arXiv:1104.1754] [INSPIRE].

    ADS  Google Scholar 

  47. M.T. Frandsen, F. Kahlhoefer, J. March-Russell, C. McCabe, M. McCullough, et al., On the DAMA and CoGeNT modulations, Phys. Rev. D 84 (2011) 041301 [arXiv:1105.3734] [INSPIRE].

    ADS  Google Scholar 

  48. C. McCabe, DAMA and CoGeNT without astrophysical uncertainties, Phys. Rev. D 84 (2011) 043525 [arXiv:1107.0741] [INSPIRE].

    ADS  Google Scholar 

  49. A. Brown, S. Henry, H. Kraus and C. McCabe, Extending the CRESST-II commissioning run limits to lower masses, Phys. Rev. D 85 (2012) 021301 [arXiv:1109.2589] [INSPIRE].

    ADS  Google Scholar 

  50. M.T. Frandsen, F. Kahlhoefer, S. Sarkar and K. Schmidt-Hoberg, Direct detection of dark matter in models with a light Z′, JHEP 09 (2011) 128 [arXiv:1107.2118] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Birkedal, K. Matchev and M. Perelstein, Dark matter at colliders: a model independent approach, Phys. Rev. D 70 (2004) 077701 [hep-ph/0403004] [INSPIRE].

    ADS  Google Scholar 

  52. J.L. Feng, S. Su and F. Takayama, Lower limit on dark matter production at the Large Hadron Collider, Phys. Rev. Lett. 96 (2006) 151802 [hep-ph/0503117] [INSPIRE].

    Article  ADS  Google Scholar 

  53. M. Beltrán, D. Hooper, E.W. Kolb, Z.A. Krusberg and T.M. Tait, Maverick dark matter at colliders, JHEP 09 (2010) 037 [arXiv:1002.4137] [INSPIRE].

    Article  ADS  Google Scholar 

  54. J. Goodman et al., Constraints on light Majorana dark matter from colliders, Phys. Lett. B 695 (2011) 185 [arXiv:1005.1286] [INSPIRE].

    ADS  Google Scholar 

  55. Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the frontier of dark matter direct detection, JHEP 12 (2010) 048 [arXiv:1005.3797] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J. Goodman et al., Constraints on dark matter from colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].

    ADS  Google Scholar 

  57. J. Goodman et al., γ ray line constraints on effective theories of dark matter, Nucl. Phys. B 844 (2011) 55 [arXiv:1009.0008] [INSPIRE].

    Article  ADS  Google Scholar 

  58. J.-F. Fortin and T.M. Tait, Collider constraints on dipole-interacting dark matter, Phys. Rev. D 85 (2012) 063506 [arXiv:1103.3289] [INSPIRE].

    ADS  Google Scholar 

  59. A. Rajaraman, W. Shepherd, T.M. Tait and A.M. Wijangco, LHC bounds on interactions of dark matter, Phys. Rev. D 84 (2011) 095013 [arXiv:1108.1196] [INSPIRE].

    ADS  Google Scholar 

  60. M.L. Graesser, I.M. Shoemaker and L. Vecchi, A dark force for baryons, arXiv:1107.2666 [INSPIRE].

  61. A. Friedland, M.L. Graesser, I.M. Shoemaker and L. Vecchi, Probing nonstandard standard model backgrounds with LHC monojets, arXiv:1111.5331 [INSPIRE].

  62. I.M. Shoemaker and L. Vecchi, Unitarity and monojet bounds on models for DAMA, CoGeNT and CRESST-II, arXiv:1112.5457 [INSPIRE].

  63. J. Preskill, Gauge anomalies in an effective field theory, Annals Phys. 210 (1991) 323 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. M.R. Buckley, D. Hooper and J.L. Rosner, A leptophobic Zand dark matter from grand unification, Phys. Lett. B 703 (2011) 343 [arXiv:1106.3583] [INSPIRE].

    ADS  Google Scholar 

  65. P.J. Fox, J. Liu, D. Tucker-Smith and N. Weiner, An effective Z′, Phys. Rev. D 84 (2011) 115006 [arXiv:1104.4127] [INSPIRE].

    ADS  Google Scholar 

  66. S. Shalhout et al., A search for dark matter in the monojet + missing transverse energy signature in 6.7 inverse fb, CDF Note 10709 (2011).

  67. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].

    ADS  Google Scholar 

  68. P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].

    ADS  Google Scholar 

  69. CDF collaboration, T. Aaltonen et al., Search for large extra dimensions in final states containing one photon or jet and large missing transverse energy produced in \(p\overline p\) collisions at \(\sqrt {s} = {1}.{96}\;TeV\), Phys. Rev. Lett. 101 (2008) 181602 [arXiv:0807.3132] [INSPIRE].

    Article  ADS  Google Scholar 

  70. ATLAS collaboration, Search for new phenomena in monojet plus missing transverse momentum final states using 1 fb −1 of pp collisions at \(\sqrt {s} = {7}\;TeV\) with the ATLAS detector, ATLAS-CONF-2011-096 (2011).

  71. L. Vacavant and I. Hinchliffe, Signals of models with large extra dimensions in ATLAS, J. Phys. G 27 (2001) 1839 [INSPIRE].

    ADS  Google Scholar 

  72. CoGeNT collaboration, C. Aalseth et al., Results from a search for light-mass dark matter with a p-type point contact germanium detector, Phys. Rev. Lett. 106 (2011) 131301 [arXiv:1002.4703] [INSPIRE].

    Article  ADS  Google Scholar 

  73. J. Angle et al., Limits on spin-dependent WIMP-nucleon cross-sections from the XENON10 experiment, Phys. Rev. Lett. 101 (2008) 091301 [arXiv:0805.2939] [INSPIRE].

    Article  ADS  Google Scholar 

  74. M. Felizardo et al., First results of the phase II SIMPLE dark matter search, Phys. Rev. Lett. 105 (2010) 211301 [arXiv:1003.2987] [INSPIRE].

    Article  ADS  Google Scholar 

  75. S. Archambault et al., Dark matter spin-dependent limits for WIMP interactions on 19 F by PICASSO, Phys. Lett. B 682 (2009) 185 [arXiv:0907.0307] [INSPIRE].

    ADS  Google Scholar 

  76. CDF collaboration, T. Aaltonen et al., Search for new particles decaying into dijets in proton-antiproton collisions at \(\sqrt {s} = {1}.{96}\;TeV\), Phys. Rev. D 79 (2009) 112002 [arXiv:0812.4036] [INSPIRE].

    ADS  Google Scholar 

  77. ATLAS collaboration, G. Aad et al., Search for new physics in the dijet mass distribution using 1 fb −1 of pp collision data at \(\sqrt {s} = {7}\;TeV\) collected by the ATLAS detector, Phys. Lett. B 708 (2012) 37 [arXiv:1108.6311] [INSPIRE].

    ADS  Google Scholar 

  78. G. Choudalakis, How to use experimental data to compute the probability of your theory, arXiv:1110.5295 [INSPIRE].

  79. CDF collaboration, F. Abe et al., Measurement of dijet angular distributions at CDF, Phys. Rev. Lett. 77 (1996) 5336 [Erratum ibid. 78 (1997) 4307] [hep-ex/9609011] [INSPIRE].

    Article  ADS  Google Scholar 

  80. D0 collaboration, V. Abazov et al., Measurement of dijet angular distributions at \(\sqrt {s} = {1}.{96}\;TeV\) and searches for quark compositeness and extra spatial dimensions, Phys. Rev. Lett. 103 (2009) 191803 [arXiv:0906.4819] [INSPIRE].

    Article  ADS  Google Scholar 

  81. ATLAS collaboration, G. Aad et al., Search for new physics in dijet mass and angular distributions in pp collisions at \(\sqrt {s} = {7}\;TeV\) measured with the ATLAS detector, New J. Phys. 13 (2011) 053044 [arXiv:1103.3864] [INSPIRE].

    Article  ADS  Google Scholar 

  82. CMS collaboration, V. Khachatryan et al., Measurement of dijet angular distributions and search for quark compositeness in pp collisions at sqrts = 7 TeV, Phys. Rev. Lett. 106 (2011) 201804 [arXiv:1102.2020] [INSPIRE].

    Article  ADS  Google Scholar 

  83. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  84. M. Cacciari, FastJet: a code for fast k t clustering and more, hep-ph/0607071 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haipeng An.

Additional information

ArXiv ePrint: 1202.2894

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, H., Ji, X. & Wang, LT. Light dark matter and Z′ dark force at colliders. J. High Energ. Phys. 2012, 182 (2012). https://doi.org/10.1007/JHEP07(2012)182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)182

Keywords

Navigation