Skip to main content
Log in

Composite Dirac neutrinos

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present a mechanism that naturally produces light Dirac neutrinos. The basic idea is that the right-handed neutrinos are composite. Any realistic composite model must involve ‘hidden flavor’ chiral symmetries. In general some of these symmetries may survive confinement, and in particular, one of them manifests itself at low energy as an exact BL symmetry. Dirac neutrinos are therefore produced. The neutrinos are naturally light due to compositeness. In general, sterile states are present in the model, some of them can naturally be warm dark matter candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  2. R.D. Peccei, Composite models of quarks and leptons, in Gauge theories of the eighties: proceedings of the Arctic School of Physics 1982, R. Raitio and J. Lindfors eds., Lecture Notes in Physics volume 181, Springer, U.S.A. (1983).

    Google Scholar 

  3. M.E. Peskin, Compositeness of quarks and leptons in the proceedings of the International Symposium on Lepton and Photon Interactions at High Energies, W. Pfieled., Physikalisches Insitut, Unversität Bonn, Germany (1981).

    Google Scholar 

  4. S. Dimopoulos, S. Raby and L. Susskind, Light composite fermions, Nucl. Phys. B 173 (1980) 208 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Raby, S. Dimopoulos and L. Susskind, Tumbling gauge theories, Nucl. Phys. B 169 (1980) 373 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. O. Napoly, On the validity of the complementarity principle for dynamically broken gauge theories, Nucl. Phys. B 198 (1982) 119 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. N. Arkani-Hamed and Y. Grossman, Light active and sterile neutrinos from compositeness, Phys. Lett. B 459 (1999) 179 [hep-ph/9806223] [SPIRES].

    ADS  Google Scholar 

  8. Y. Grossman and Y. Tsai, Leptogenesis with composite neutrinos, JHEP 12 (2008) 016 [arXiv:0811.0871] [SPIRES].

    ADS  Google Scholar 

  9. T. Okui, Searching for composite neutrinos in the cosmic microwave background, JHEP 09 (2005) 017 [hep-ph/0405083] [SPIRES].

    Article  ADS  Google Scholar 

  10. P. Langacker, A mechanism for ordinary-sterile neutrino mixing, Phys. Rev. D 58 (1998) 093017 [hep-ph/9805281] [SPIRES].

    ADS  Google Scholar 

  11. D.A. Demir, L.L. Everett and P. Langacker, Dirac neutrino masses from generalized supersymmetry breaking, Phys. Rev. Lett. 100 (2008) 091804 [arXiv:0712.1341] [SPIRES].

    Article  ADS  Google Scholar 

  12. G. Marshall, M. McCaskey and M. Sher, A supersymmetric model with Dirac neutrino masses, Phys. Rev. D 81 (2010) 053006 [arXiv:0912.1599] [SPIRES].

    ADS  Google Scholar 

  13. S. Abel, A. Dedes and K. Tamvakis, Naturally small Dirac neutrino masses in supergravity, Phys. Rev. D 71 (2005) 033003 [hep-ph/0402287] [SPIRES].

    ADS  Google Scholar 

  14. Y. Grossman and M. Neubert, Neutrino masses and mixings in non-factorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali and J. March-Russell, Neutrino masses from large extra dimensions, Phys. Rev. D 65 (2002) 024032 [hep-ph/9811448] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. K.R. Dienes, E. Dudas and T. Gherghetta, Light neutrinos without heavy mass scales: a higher-dimensional seesaw mechanism, Nucl. Phys. B 557 (1999) 25 [hep-ph/9811428] [SPIRES].

    Article  ADS  Google Scholar 

  17. P.Q. Hung, A new mechanism for a naturally small Dirac neutrino mass, Phys. Rev. D 67 (2003) 095011 [hep-ph/0210131] [SPIRES].

    ADS  Google Scholar 

  18. T. Gherghetta, Dirac neutrino masses with Planck scale lepton number violation, Phys. Rev. Lett. 92 (2004) 161601 [hep-ph/0312392] [SPIRES].

    Article  ADS  Google Scholar 

  19. H. Davoudiasl, R. Kitano, G.D. Kribs and H. Murayama, Models of neutrino mass with a low cutoff scale, Phys. Rev. D 71 (2005) 113004 [hep-ph/0502176] [SPIRES].

    ADS  Google Scholar 

  20. L.M. Krauss and F. Wilczek, Discrete Gauge symmetry in continuum theories, Phys. Rev. Lett. 62 (1989) 1221 [SPIRES].

    Article  ADS  Google Scholar 

  21. I. Gogoladze and A. Perez-Lorenzana, Small Dirac neutrino masses and R-parity from anomalous U(1) symmetry, Phys. Rev. D 65 (2002) 095011 [hep-ph/0112034] [SPIRES].

    ADS  Google Scholar 

  22. M.-C. Chen, A. de Gouvêa and B.A. Dobrescu, Gauge trimming of neutrino masses, Phys. Rev. D 75 (2007) 055009 [hep-ph/0612017] [SPIRES].

    ADS  Google Scholar 

  23. G. von Gersdorff and M. Quirós, Conformal neutrinos: an alternative to the see-saw mechanism, Phys. Lett. B 678 (2009) 317 [arXiv:0901.0006] [SPIRES].

    ADS  Google Scholar 

  24. G. ’t Hooft, Recent developments in gauge theories, Plenum Press, U.S.A. (1980).

    Google Scholar 

  25. S. Weinberg, The quantum theory of fields: volume II, Cambridge University Press, Cambridge U.K. (1996).

    MATH  Google Scholar 

  26. C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [hep-ph/0203079] [SPIRES].

    Article  ADS  Google Scholar 

  27. S. Dodelson and L.M. Widrow, Sterile neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [SPIRES].

    Article  ADS  Google Scholar 

  28. T. Asaka, S. Blanchet and M. Shaposhnikov, The nuMSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065] [SPIRES].

    ADS  Google Scholar 

  29. T. Asaka, M. Shaposhnikov and A. Kusenko, Opening a new window for warm dark matter, Phys. Lett. B 638 (2006) 401 [hep-ph/0602150] [SPIRES].

    ADS  Google Scholar 

  30. A. Kusenko, Sterile neutrinos: the dark side of the light fermions, Phys. Rept. 481 (2009) 1 [arXiv:0906.2968] [SPIRES].

    Article  ADS  Google Scholar 

  31. M. Loewenstein and A. Kusenko, Dark matter search using Chandra observations of Willman 1 and a spectral feature consistent with a decay line of a 5 keV sterile neutrino, Astrophys. J. 714 (2010) 652 [arXiv:0912.0552] [SPIRES].

    Article  ADS  Google Scholar 

  32. L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-in production of FIMP dark matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [SPIRES].

    Article  ADS  Google Scholar 

  33. S. Antusch, C. Biggio, E. Fernandez-Martinez, M.B. Gavela and J. Lopez-Pavon, Unitarity of the leptonic mixing matrix, JHEP 10 (2006) 084 [hep-ph/0607020] [SPIRES].

    Article  ADS  Google Scholar 

  34. C. Giunti, C.W. Kim and U.W. Lee, Comments on the weak states of neutrinos, Phys. Rev. D 45 (1992) 2414 [SPIRES].

    ADS  Google Scholar 

  35. P. Langacker and D. London, Lepton number violation and massless nonorthogonal neutrinos, Phys. Rev. D 38 (1988) 907 [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean J. Robinson.

Additional information

ArXiv ePrint: 1009.2781

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grossman, Y., Robinson, D.J. Composite Dirac neutrinos. J. High Energ. Phys. 2011, 132 (2011). https://doi.org/10.1007/JHEP01(2011)132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2011)132

Keywords

Navigation