ATLAS collaboration, Measurement of inclusive jet and dijet cross-sections in proton-proton collisions at
\( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP05 (2018) 195 [arXiv:1711.02692] [INSPIRE].
CMS collaboration, Measurement of the double-differential inclusive jet cross section in proton-proton collisions at
\( \sqrt{s} \) = 13 TeV, Eur. Phys. J.C 76 (2016) 451 [arXiv:1605.04436] [INSPIRE].
CMS collaboration, Measurement of the triple-differential dijet cross section in proton-proton collisions at
\( \sqrt{s} \) = 8 TeV and constraints on parton distribution functions, Eur. Phys. J.C 77 (2017) 746 [arXiv:1705.02628] [INSPIRE].
J. Gao, Z. Liang, D.E. Soper, H.-L. Lai, P.M. Nadolsky and C.P. Yuan, MEKS: a program for computation of inclusive jet cross sections at hadron colliders, Comput. Phys. Commun.184 (2013) 1626 [arXiv:1207.0513] [INSPIRE].
ADS
Article
Google Scholar
S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in POWHEG, JHEP04 (2011) 081 [arXiv:1012.3380] [INSPIRE].
ADS
MATH
Article
Google Scholar
W.T. Giele, E.W.N. Glover and D.A. Kosower, The two-jet differential cross section at
\( \mathcal{O}\left({\alpha}_s^3\right) \)in hadron collisions, Phys. Rev. Lett.73 (1994) 2019 [hep-ph/9403347] [INSPIRE].
ADS
Article
Google Scholar
S.D. Ellis, Z. Kunszt and D.E. Soper, Two jet production in hadron collisions at order
\( alph{a}_S^3 \)in QCD, Phys. Rev. Lett.69 (1992) 1496 [INSPIRE].
ADS
Article
Google Scholar
J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and J. Pires, Precise predictions for dijet production at the LHC, Phys. Rev. Lett.119 (2017) 152001 [arXiv:1705.10271] [INSPIRE].
ADS
Article
Google Scholar
A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and J. Pires, Triple differential dijet cross section at the LHC, Phys. Rev. Lett.123 (2019) 102001 [arXiv:1905.09047] [INSPIRE].
ADS
Article
Google Scholar
J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, A. Huss and J. Pires, Jet cross sections at the LHC with NNLOJET, PoS(LL2018)001 (2018) [arXiv:1807.06057] [INSPIRE].
M. Czakon, A. van Hameren, A. Mitov and R. Poncelet, Single-jet inclusive rates with exact color at
\( \mathcal{O}\left({\alpha}_s^4\right) \), JHEP10 (2019) 262 [arXiv:1907.12911] [INSPIRE].
ADS
Article
Google Scholar
C. Anastasiou, E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Two-loop QCD corrections to the scattering of massless distinct quarks, Nucl. Phys.B 601 (2001) 318 [hep-ph/0010212] [INSPIRE].
ADS
Article
Google Scholar
C. Anastasiou, E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Two loop QCD corrections to massless identical quark scattering, Nucl. Phys.B 601 (2001) 341 [hep-ph/0011094] [INSPIRE].
ADS
Article
Google Scholar
Z. Bern, L.J. Dixon and D.A. Kosower, A two loop four gluon helicity amplitude in QCD, JHEP01 (2000) 027 [hep-ph/0001001] [INSPIRE].
ADS
Article
Google Scholar
E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Two loop QCD corrections to gluon-gluon scattering, Nucl. Phys.B 605 (2001) 467 [hep-ph/0102201] [INSPIRE].
ADS
Article
Google Scholar
C. Anastasiou, E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Two loop QCD corrections to massless quark gluon scattering, Nucl. Phys.B 605 (2001) 486 [hep-ph/0101304] [INSPIRE].
ADS
Article
Google Scholar
Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for gluon-gluon scattering in QCD and supersymmetric Yang-Mills theory, JHEP03 (2002) 018 [hep-ph/0201161] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for quark gluon scattering in QCD and gluino gluon scattering in supersymmetric Yang-Mills theory, JHEP06 (2003) 028 [Erratum ibid.04 (2014) 112] [hep-ph/0304168] [INSPIRE].
A. De Freitas and Z. Bern, Two-loop helicity amplitudes for quark-quark scattering in QCD and gluino-gluino scattering in supersymmetric Yang-Mills theory, JHEP09 (2004) 039 [hep-ph/0409007] [INSPIRE].
Article
Google Scholar
A. De Freitas and Z. Bern, Two-loop helicity amplitudes for fermion-fermion scattering, Nucl. Phys. Proc. Suppl.135 (2004) 51 [hep-ph/0409036] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page and M. Zeng, Two-loop four-gluon amplitudes from numerical unitarity, Phys. Rev. Lett.119 (2017) 142001 [arXiv:1703.05273] [INSPIRE].
ADS
Article
Google Scholar
E.W.N. Glover and M.E. Tejeda-Yeomans, Two loop QCD helicity amplitudes for massless quark massless gauge boson scattering, JHEP06 (2003) 033 [hep-ph/0304169] [INSPIRE].
ADS
Article
Google Scholar
E.W.N. Glover, Two loop QCD helicity amplitudes for massless quark quark scattering, JHEP04 (2004) 021 [hep-ph/0401119] [INSPIRE].
ADS
Article
Google Scholar
A. Broggio, A. Ferroglia, B.D. Pecjak and Z. Zhang, NNLO hard functions in massless QCD, JHEP12 (2014) 005 [arXiv:1409.5294] [INSPIRE].
ADS
Article
Google Scholar
Q. Jin and H. Lüo, Analytic form of the three-loop four-gluon scattering amplitudes in Yang-Mills theory, arXiv:1910.05889 [INSPIRE].
G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys.B 44 (1972) 189 [INSPIRE].
Z. Bern and D.A. Kosower, The computation of loop amplitudes in gauge theories, Nucl. Phys.B 379 (1992) 451 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F.A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans and T.T. Wu, Single Bremsstrahlung processes in gauge theories, Phys. Lett.B 103 (1981) 124 [INSPIRE].
ADS
Article
Google Scholar
P. De Causmaecker, R. Gastmans, W. Troost and T.T. Wu, Helicity amplitudes for massless QED, Phys. Lett.B 105 (1981) 215 [INSPIRE].
ADS
Article
Google Scholar
Z. Xu, D.-H. Zhang and L. Chang, Helicity amplitudes for multiple Bremsstrahlung in massless non-Abelian gauge theories, Nucl. Phys.B 291 (1987) 392 [INSPIRE].
ADS
Article
Google Scholar
A. Broggio, C. Gnendiger, A. Signer, D. Stöckinger and A. Visconti, SCET approach to regularization-scheme dependence of QCD amplitudes, JHEP01 (2016) 078 [arXiv:1506.05301] [INSPIRE].
ADS
Article
Google Scholar
S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett.B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
ADS
Article
Google Scholar
G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett.B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].
ADS
MATH
Article
Google Scholar
S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop anomalous dimension matrix for soft gluon exchange, Phys. Rev. Lett.97 (2006) 072001 [hep-ph/0606254] [INSPIRE].
ADS
MATH
Article
Google Scholar
S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev.D 74 (2006) 074004 [hep-ph/0607309] [INSPIRE].
ADS
Google Scholar
T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett.102 (2009) 162001 [Erratum ibid.111 (2013) 199905] [arXiv:0901.0722] [INSPIRE].
E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP03 (2009) 079 [arXiv:0901.1091] [INSPIRE].
ADS
Article
Google Scholar
Ø. Almelid, C. Duhr and E. Gardi, Three-loop corrections to the soft anomalous dimension in multileg scattering, Phys. Rev. Lett.117 (2016) 172002 [arXiv:1507.00047] [INSPIRE].
ADS
Article
Google Scholar
Ø. Almelid, C. Duhr, E. Gardi, A. McLeod and C.D. White, Bootstrapping the QCD soft anomalous dimension, JHEP09 (2017) 073 [arXiv:1706.10162] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys.105 (1993) 279 [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
L. Chen, A prescription for projectors to compute helicity amplitudes in D dimensions, arXiv:1904.00705 [INSPIRE].
T. Gehrmann, L. Tancredi and E. Weihs, Two-loop QCD helicity amplitudes for gg → Zg and gg → Zγ, JHEP04 (2013) 101 [arXiv:1302.2630] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
T. Peraro and L. Tancredi, Physical projectors for multi-leg helicity amplitudes, JHEP07 (2019) 114 [arXiv:1906.03298] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, arXiv:1707.06453 [INSPIRE].
F.V. Tkachov, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett.B 100 (1981) 65 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys.B 192 (1981) 159 [INSPIRE].
ADS
Article
Google Scholar
R.N. Lee, Group structure of the integration-by-part identities and its application to the reduction of multiloop integrals, JHEP07 (2008) 031 [arXiv:0804.3008] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
R.N. Lee and A.A. Pomeransky, Critical points and number of master integrals, JHEP11 (2013) 165 [arXiv:1308.6676] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun.189 (2015) 182 [arXiv:1408.2372] [INSPIRE].
ADS
MATH
Article
Google Scholar
A.V. Kotikov, Differential equation method: the calculation of N point Feynman diagrams, Phys. Lett.B 267 (1991) 123 [Erratum ibid.B 295 (1992) 409] [INSPIRE].
Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys.B 412 (1994) 751 [hep-ph/9306240] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].
ADS
Article
Google Scholar
J.M. Henn and B. Mistlberger, Four-gluon scattering at three loops, infrared structure and the Regge limit, Phys. Rev. Lett.117 (2016) 171601 [arXiv:1608.00850] [INSPIRE].
ADS
Article
Google Scholar
J.M. Henn and B. Mistlberger, Four-graviton scattering to three loops in N = 8 supergravity, JHEP05 (2019) 023 [arXiv:1902.07221] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett.5 (1998) 497 [arXiv:1105.2076] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
E. Panzer, On hyperlogarithms and Feynman integrals with divergences and many scales, JHEP03 (2014) 071 [arXiv:1401.4361] [INSPIRE].
ADS
Article
Google Scholar
C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP10 (2012) 075 [arXiv:1110.0458] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun.188 (2015) 148 [arXiv:1403.3385] [INSPIRE].
ADS
MATH
Article
Google Scholar
C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP08 (2012) 043 [arXiv:1203.0454] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun.174 (2006) 222 [hep-ph/0507152] [INSPIRE].
ADS
MATH
Article
Google Scholar
L.J. Dixon, Calculating scattering amplitudes efficiently, in QCD and beyond. Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics, TASI-95, Boulder, CO, U.S.A., 4–30 June 1995, pg. 539 [hep-ph/9601359] [INSPIRE].
F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, The five-loop β-function of Yang-Mills theory with fermions, JHEP02 (2017) 090 [arXiv:1701.01404] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-loop running of the QCD coupling constant, Phys. Rev. Lett.118 (2017) 082002 [arXiv:1606.08659] [INSPIRE].
ADS
Article
Google Scholar
Z. Bern and D.A. Kosower, Color decomposition of one loop amplitudes in gauge theories, Nucl. Phys.B 362 (1991) 389 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S.G. Naculich, All-loop group-theory constraints for color-ordered SU(N ) gauge-theory amplitudes, Phys. Lett.B 707 (2012) 191 [arXiv:1110.1859] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar