Skip to main content

Very general holographic superconductors and entanglement thermodynamics

A preprint version of the article is available at arXiv.


We construct and analyze holographic superconductors with generalized higher derivative couplings, in single R-charged black hole backgrounds in four and five dimensions. These systems, which we call very general holographic superconductors, have multiple tuning parameters and are shown to exhibit a rich phase structure. We establish the phase diagram numerically as well as by computing the free energy, and then validated the results by calculating the entanglement entropy for these systems. The entanglement entropy is shown to be a perfect indicator of the phase diagram. The differences in the nature of the entanglement entropy in R-charged backgrounds compared to the AdS-Schwarzschild cases are pointed out. We also compute the analogue of the entangling temperature for a subclass of these systems and compare the results with non-hairy backgrounds.


  1. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    Article  MATH  MathSciNet  Google Scholar 

  2. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    ADS  Article  Google Scholar 

  3. T. Albash and C.V. Johnson, A Holographic Superconductor in an External Magnetic Field, JHEP 09 (2008) 121 [arXiv:0804.3466] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  4. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  5. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  6. T. Albash and C.V. Johnson, Holographic Studies of Entanglement Entropy in Superconductors, JHEP 05 (2012) 079 [arXiv:1202.2605] [INSPIRE].

    ADS  Article  Google Scholar 

  7. A. Dey, S. Mahapatra and T. Sarkar, Generalized Holographic Superconductors with Higher Derivative Couplings, JHEP 06 (2014) 147 [arXiv:1404.2190] [INSPIRE].

    ADS  Article  Google Scholar 

  8. S. Franco, A. Garcia-Garcia and D. Rodriguez-Gomez, A General class of holographic superconductors, JHEP 04 (2010) 092 [arXiv:0906.1214] [INSPIRE].

    ADS  Article  Google Scholar 

  9. X.-M. Kuang, E. Papantonopoulos, G. Siopsis and B. Wang, Building a Holographic Superconductor with Higher-derivative Couplings, Phys. Rev. D 88 (2013) 086008 [arXiv:1303.2575] [INSPIRE].

    ADS  Google Scholar 

  10. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].

    ADS  Google Scholar 

  11. G.T. Horowitz and M.M. Roberts, Holographic Superconductors with Various Condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [INSPIRE].

    ADS  Google Scholar 

  12. R. Gregory, S. Kanno and J. Soda, Holographic Superconductors with Higher Curvature Corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  13. Q. Pan, B. Wang, E. Papantonopoulos, J. Oliveira and A.B. Pavan, Holographic Superconductors with various condensates in Einstein-Gauss-Bonnet gravity, Phys. Rev. D 81 (2010) 106007 [arXiv:0912.2475] [INSPIRE].

    ADS  Google Scholar 

  14. R.-G. Cai, S. He, L. Li and L.-F. Li, Entanglement Entropy and Wilson Loop in Stúckelberg Holographic Insulator/Superconductor Model, JHEP 10 (2012) 107 [arXiv:1209.1019] [INSPIRE].

    ADS  Article  Google Scholar 

  15. S. Mahapatra, P. Phukon and T. Sarkar, Generalized Superconductors and Holographic Optics, JHEP 01 (2014) 135 [arXiv:1305.6273] [INSPIRE].

    Article  Google Scholar 

  16. P. Yan and P. Q-Yuan, Stückelberg holographic superconductor models with backreactions, Commun. Theor. Phys. 59 (2013) 110.

    ADS  Article  MATH  Google Scholar 

  17. A. Bianchi, R. Movshovich, N. Oeschler, P. Gegenwart, F. Steglich et al., First order superconducting phase transition in CeCoIn(5), Phys. Rev. Lett. 89 (2002) 137002 [cond-mat/0203310] [INSPIRE].

    ADS  Article  Google Scholar 

  18. Physical Review Letters 110 (2013) 077003 [arXiv:1212.4954].

  19. Y. Tanaka, A. Iyo, S. Itoh, K. Tokiwa, T. Nishio et al., Experimental observation of a first-order phase transition below the superconducting transition temperature in the multilayer cuprate superconductor HgBa 2 Ca 4 Cu 5 O y , J. Phys. Soc. Jap. 83 (2014) 074705 [arXiv:1408.1445] [INSPIRE].

    ADS  Article  Google Scholar 

  20. N. Bobev, A. Kundu, K. Pilch and N.P. Warner, Minimal Holographic Superconductors from Maximal Supergravity, JHEP 03 (2012) 064 [arXiv:1110.3454] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  21. X.-M. Kuang, E. Papantonopoulos and B. Wang, Entanglement Entropy as a Probe of the Proximity Effect in Holographic Superconductors, JHEP 05 (2014) 130 [arXiv:1401.5720] [INSPIRE].

    ADS  Article  Google Scholar 

  22. H. Liu and M. Mezei, A Refinement of entanglement entropy and the number of degrees of freedom, JHEP 04 (2013) 162 [arXiv:1202.2070] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  23. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

    Google Scholar 

  24. R.-G. Cai, L. Li, L.-F. Li and R.-K. Su, Entanglement Entropy in Holographic P-Wave Superconductor/Insulator Model, JHEP 06 (2013) 063 [arXiv:1303.4828] [INSPIRE].

    ADS  Article  Google Scholar 

  25. J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin, Thermodynamical Property of Entanglement Entropy for Excited States, Phys. Rev. Lett. 110 (2013) 091602 [arXiv:1212.1164] [INSPIRE].

    ADS  Article  Google Scholar 

  26. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  27. D. Allahbakhshi, M. Alishahiha and A. Naseh, Entanglement Thermodynamics, JHEP 08 (2013) 102 [arXiv:1305.2728] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  28. K. Maeda, M. Natsuume and T. Okamura, Dynamic critical phenomena in the AdS/CFT duality, Phys. Rev. D 78 (2008) 106007 [arXiv:0809.4074] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  29. V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  30. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tapobrata Sarkar.

Additional information

ArXiv ePrint: 1409.5309

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dey, A., Mahapatra, S. & Sarkar, T. Very general holographic superconductors and entanglement thermodynamics. J. High Energ. Phys. 2014, 135 (2014).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • Holography and condensed matter physics (AdS/CMT)
  • Gauge-gravity correspondence
  • AdS-CFT Correspondence