D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, The Heterotic String, Phys. Rev. Lett. 54 (1985) 502 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
L. Brink and M. Henneaux, Principles of string theory, Plenum, New York, U.S.A., (1988).
M. Stone, Quantum Hall effect, World Scientific, Singapore, (1992).
Book
Google Scholar
D. Tong, Lectures on the Quantum Hall Effect, 2016, arXiv:1606.06687 [INSPIRE].
W. Siegel, Manifest Lorentz Invariance Sometimes Requires Nonlinearity, Nucl. Phys. B 238 (1984) 307 [INSPIRE].
ADS
Article
Google Scholar
M. Henneaux and C. Teitelboim, Consistent quantum mechanics of chiral p forms, in 2nd Meeting on Quantum Mechanics of Fundamental Systems (CECS) Santiago, Chile, December 17–20, 1987, pp. 79–112.
M. Henneaux and C. Teitelboim, Dynamics of Chiral (Selfdual) P Forms, Phys. Lett. B 206 (1988) 650 [INSPIRE].
ADS
Article
Google Scholar
P. Pasti, D.P. Sorokin and M. Tonin, On Lorentz invariant actions for chiral p forms, Phys. Rev. D 55 (1997) 6292 [hep-th/9611100] [INSPIRE].
ADS
MathSciNet
Google Scholar
R. Floreanini and R. Jackiw, Selfdual Fields as Charge Density Solitons, Phys. Rev. Lett. 59 (1987) 1873 [INSPIRE].
ADS
Article
Google Scholar
M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S.A. Hartnoll, Horizons, holography and condensed matter, in Black holes in higher dimensions, G.T. Horowitz, ed., pp. 387–419, (2012), arXiv:1106.4324 [INSPIRE].
M. Taylor, Lifshitz holography, Class. Quant. Grav. 33 (2016) 033001 [arXiv:1512.03554] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E. Lifshitz, On the theory of second-order phase transitions I & II, Zh. Eksp. Teor. Fiz 11 (1941) 269.
Google Scholar
I. Arav, S. Chapman and Y. Oz, Lifshitz Scale Anomalies, JHEP 02 (2015) 078 [arXiv:1410.5831] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Chapman, Y. Oz and A. Raviv-Moshe, On Supersymmetric Lifshitz Field Theories, JHEP 10 (2015) 162 [arXiv:1508.03338] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
I. Arav, Y. Oz and A. Raviv-Moshe, Lifshitz Anomalies, Ward Identities and Split Dimensional Regularization, JHEP 03 (2017) 088 [arXiv:1612.03500] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
I. Arav, Y. Oz and A. Raviv-Moshe, Holomorphic Structure and Quantum Critical Points in Supersymmetric Lifshitz Field Theories, arXiv:1908.03220 [INSPIRE].
J.A. Hertz, Quantum critical phenomena, Phys. Rev. B 14 (1976) 1165 [INSPIRE].
ADS
Article
Google Scholar
S. Sachdev, Quantum Phase Transitions, Cambridge University Press, (1999).
E. Bettelheim, A.G. Abanov and P. Wiegmann, Quantum Shock Waves: The case for non-linear effects in dynamics of electronic liquids, Phys. Rev. Lett. 97 (2006) 246401 [cond-mat/0606778] [INSPIRE].
P. Wiegmann, Non-Linear hydrodynamics and Fractionally Quantized Solitons at Fractional Quantum Hall Edge, Phys. Rev. Lett. 108 (2012) 206810 [arXiv:1112.0810] [INSPIRE].
ADS
Article
Google Scholar
S. Sotiriadis, Equilibration in one-dimensional quantum hydrodynamic systems, J. Phys. A 50 (2017) 424004 [arXiv:1612.00373] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
J. Aguilera Damia, S. Kachru, S. Raghu and G. Torroba, Two dimensional non-Fermi liquid metals: a solvable large N limit, Phys. Rev. Lett. 123 (2019) 096402 [arXiv:1905.08256] [INSPIRE].
ADS
Article
Google Scholar
S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].
ADS
MathSciNet
Google Scholar
G. Bertoldi, B.A. Burrington and A. Peet, Black Holes in asymptotically Lifshitz spacetimes with arbitrary critical exponent, Phys. Rev. D 80 (2009) 126003 [arXiv:0905.3183] [INSPIRE].
ADS
MathSciNet
Google Scholar
G. Bertoldi, B.A. Burrington and A.W. Peet, Thermodynamics of black branes in asymptotically Lifshitz spacetimes, Phys. Rev. D 80 (2009) 126004 [arXiv:0907.4755] [INSPIRE].
ADS
MathSciNet
Google Scholar
E. D’Hoker and P. Kraus, Holographic Metamagnetism, Quantum Criticality and Crossover Behavior, JHEP 05 (2010) 083 [arXiv:1003.1302] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
H.A. González, D. Tempo and R. Troncoso, Field theories with anisotropic scaling in 2D, solitons and the microscopic entropy of asymptotically Lifshitz black holes, JHEP 11 (2011) 066 [arXiv:1107.3647] [INSPIRE].
S.A. Hartnoll, D.M. Ramirez and J.E. Santos, Emergent scale invariance of disordered horizons, JHEP 09 (2015) 160 [arXiv:1504.03324] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Matulich and R. Troncoso, Asymptotically Lifshitz wormholes and black holes for Lovelock gravity in vacuum, JHEP 10 (2011) 118 [arXiv:1107.5568] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Lifshitz Black Hole in Three Dimensions, Phys. Rev. D 80 (2009) 104029 [arXiv:0909.1347] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
A. Pérez, D. Tempo and R. Troncoso, Boundary conditions for General Relativity on AdS3 and the KdV hierarchy, JHEP 06 (2016) 103 [arXiv:1605.04490] [INSPIRE].
O. Fuentealba et al., Integrable systems with BMS3 Poisson structure and the dynamics of locally flat spacetimes, JHEP 01 (2018) 148 [arXiv:1711.02646] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D. Melnikov, F. Novaes, A. Pérez and R. Troncoso, Lifshitz Scaling, Microstate Counting from Number Theory and Black Hole Entropy, JHEP 06 (2019) 054 [arXiv:1808.04034] [INSPIRE].
H.A. González, J. Matulich, M. Pino and R. Troncoso, Revisiting the asymptotic dynamics of General Relativity on AdS3, JHEP 12 (2018) 115 [arXiv:1809.02749] [INSPIRE].
D. Grumiller and W. Merbis, Near horizon dynamics of three dimensional black holes, arXiv:1906.10694 [INSPIRE].
E. Ojeda and A. Pérez, Boundary conditions for General Relativity in three-dimensional spacetimes, integrable systems and the KdV/mKdV hierarchies, JHEP 08 (2019) 079 [arXiv:1906.11226] [INSPIRE].
J.L. Cardy, Critical exponents of the chiral Potts model from conformal field theory, Nucl. Phys. B 389 (1993) 577 [hep-th/9210002] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A.V. Chubukov, S. Sachdev and T. Senthil, Quantum phase transitions in frustrated quantum antiferromagnets, Nucl. Phys. B 426 (1994) 601 [Erratum ibid. B 438 (1995) 649] [INSPIRE].
K. Yang, Ferromagnetic transition in one-dimensional itinerant electron systems, Phys. Rev. Lett. 93 (2004) 066401.
ADS
Article
Google Scholar
R.N. Caldeira Costa and M. Taylor, Holography for chiral scale-invariant models, JHEP 02 (2011) 082 [arXiv:1010.4800] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D.M. Hofman and A. Strominger, Chiral Scale and Conformal Invariance in 2D Quantum Field Theory, Phys. Rev. Lett. 107 (2011) 161601 [arXiv:1107.2917] [INSPIRE].
ADS
Article
Google Scholar
G.H. Hardy and S. Ramanujan, Asymptotic formulaæ in combinatory analysis, Proc. Lond. Math. Soc. 2 (1918) 75.
Article
Google Scholar
L.D. Faddeev and R. Jackiw, Hamiltonian Reduction of Unconstrained and Constrained Systems, Phys. Rev. Lett. 60 (1988) 1692 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer Science & Business Media, (2012).
P. Senjanovic, Path Integral Quantization of Field Theories with Second Class Constraints, Annals Phys. 100 (1976) 227 [Erratum ibid. 209 (1991) 248] [INSPIRE].
L.D. Faddeev and A.A. Slavnov, Gauge fields. Introduction to quantum theory, Front. Phys. 50 (1980) 1 [INSPIRE].
M. Henneaux and C. Teitelboim, Quantization of gauge systems, Princeton University Press, Princeton, U.S.A., (1992).
Book
Google Scholar
J. Cotler and K. Jensen, A theory of reparameterizations for AdS3 gravity, JHEP 02 (2019) 079 [arXiv:1808.03263] [INSPIRE].
ADS
Article
Google Scholar
A. Gafni, Power partitions, J. Number Theory 163 (2016) 19 [arXiv:1506.06124].
MathSciNet
Article
Google Scholar
E.M. Wright, Asymptotic partition formulae. III. Partitions into k-th powers, Acta Math. 63 (1934) 143.
R.C. Vaughan, Squares: additive questions and partitions, Int. J. Number Theory 11 (2015) 1367.
MathSciNet
Article
Google Scholar
G. Tenenbaum, J. Wu and Y.-L. Li, Power partitions and saddle-point method, J. Number Theory 204 (2019) 435 [arXiv:1901.02234].
MathSciNet
Article
Google Scholar
F. Luca and D. Ralaivaosaona, An explicit bound for the number of partitions into roots, J. Number Theory 169 (2016) 250.
MathSciNet
Article
Google Scholar
Y.-L. Li and Y.-G. Chen, On the r-th root partition function, II, J. Number Theory 188 (2018) 392.
MathSciNet
Article
Google Scholar