Skip to main content
Log in

Emergent Lorentz invariance with chiral fermions

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the renormalization group flow in strongly interacting field theories in the fermion sector corresponding to the transition from theories without a Lorentz invariance at high energies to theories with an approximate Lorentz invariance in the infrared limit. We use the holographic description of the strong coupling. We give special attention to the emergence of chiral fermions in the low-energy limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. B. Nielsen and M. Ninomiya, Nucl. Phys. B, 141, 153–177 (1978).

    Article  ADS  Google Scholar 

  2. S. Chadha and H. B. Nielsen, Nucl. Phys. B, 217, 125–144 (1983).

    Article  ADS  Google Scholar 

  3. P. Horava, Phys. Rev. D, 79, 084008 (2009); arXiv:0901.3775v2 [hep-th] (2009).

    Article  ADS  MathSciNet  Google Scholar 

  4. E. M. Lifshitz, Sov. Phys. JETP, 11, 255–269 (1941).

    Google Scholar 

  5. D. Blas, O. Pujolàs, and S. Sibiryakov, Phys. Rev. Lett., 104, 181302 (2010); arXiv:0909.3525v1 [hep-th] (2009).

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Blas, O. Pujolàs, and S. Sibiryakov, JHEP, 1104, 018 (2011); arXiv:1007.3503v1 [hep-th] (2010).

    Article  ADS  Google Scholar 

  7. D. Blas and E. Lim, Internat. J. Mod. Phys. D, 23, 1443009 (2014); arXiv:1412.4828v2 [gr-qc] (2014).

    Article  ADS  Google Scholar 

  8. T. Jacobson and D. Mattingly, Phys. Rev. D, 64, 024028 (2001); arXiv:gr-qc/0007031v4 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  9. N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, and S. Mukohyama, JHEP, 0405, 074 (2004); arXiv:hep-th/0312099v1 (2003).

    Article  Google Scholar 

  10. S. L. Dubovsky, JHEP, 0410, 076 (2004); arXiv:hep-th/0409124v2 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  11. V. A. Rubakov and P. G. Tinyakov, Phys. Usp., 51, 759–792 (2008); arXiv:0802.4379v1 [hep-th] (2008).

    Article  ADS  Google Scholar 

  12. T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys. Rep., 513, 1–189 (2012); arXiv:1106.2476v3 [astro-ph.CO] (2011).

    Article  ADS  MathSciNet  Google Scholar 

  13. O. Vafek, Z. Tešanović, and M. Franz, Phys. Rev. Lett., 89, 157003 (2002); arXiv:cond-mat/0203047v2 (2002)

    Article  ADS  Google Scholar 

  14. M. Franz, Z. Tešanović, and O. Vafek, Phys. Rev. B, 66, 054535 (2002); arXiv:cond-mat/0203333v3 (2002).

    Article  ADS  Google Scholar 

  15. D. J. Lee and I. F. Herbut, Phys. Rev. B, 66, 094512 (2002); arXiv:cond-mat/0201088v4 (2002).

    Article  ADS  Google Scholar 

  16. S.-S. Lee, Phys. Rev. B, 76, 075103 (2007); arXiv:cond-mat/0611658v5 (2006)

    Article  ADS  Google Scholar 

  17. P. Ponte and S.-S. Lee, New J. Phys., 16, 013044 (2014); arXiv:1206.2340v2 [cond-mat.str-el] (2012).

    Article  ADS  Google Scholar 

  18. I. F. Herbut, V. Juricic, and B. Roy, Phys. Rev. B, 79, 085116 (2009); arXiv:0811.0610v3 [cond-mat.str-el] (2008).

    Article  ADS  Google Scholar 

  19. A. Giuliani, V. Mastropietro, and M. Porta, Ann. Phys., 327, 461–511 (2012); arXiv:1107.4741v1 [cond-mat.strel] (2011).

    Article  ADS  MathSciNet  Google Scholar 

  20. T. Grover, D. N. Sheng, and A. Vishwanath, Science, 344, 280–283 (2014); arXiv:1301.7449v2 [cond-mat.str-el] (2013).

    Article  ADS  Google Scholar 

  21. G. F. Giudice, M. Raidal, and A. Strumia, Phys. Lett. B, 690, 272–279 (2010); arXiv:1003.2364v3 [hep-ph] (2010).

    Article  ADS  Google Scholar 

  22. R. Sundrum, Phys. Rev. D, 86, 085025 (2012); arXiv:1106.4501v3 [hep-th] (2011).

    Article  ADS  Google Scholar 

  23. G. Bednik, O. Pujolàs, and S. Sibiryakov, JHEP, 1311, 064 (2013); arXiv:1305.0011v3 [hep-th] (2013).

    Article  ADS  Google Scholar 

  24. S. Sibiryakov, Phys. Rev. Lett., 112, 241602 (2014); arXiv:1403.4742v2 [hep-th] (2014).

    Article  ADS  Google Scholar 

  25. D. Mattingly, Living Rev. Rel., 8, 5 (2005); arXiv:gr-qc/0502097v2 (2005).

    Google Scholar 

  26. V. A. Kostelecky and N. Russell, Rev. Modern Phys., 83, 11–31 (2011); arXiv:0801.0287v9 [hep-ph] (2008).

    Article  ADS  Google Scholar 

  27. S. Liberati, Class. Q. Grav., 30, 133001 (2013); arXiv:1304.5795v3 [gr-qc] (2013).

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Pospelov and Y. Shang, Phys. Rev. D, 85, 105001 (2012); arXiv:1010.5249v3 [hep-th] (2010).

    Article  ADS  Google Scholar 

  29. M. Colombo, A. E. Gümrükcuglu, and T. P. Sotiriou, Phys. Rev. D, 91, 044021 (2015); arXiv:1410.6360v1 [hep-th] (2014).

    Article  ADS  Google Scholar 

  30. S. R. Coleman and S. L. Glashow, Phys. Rev. D, 59, 116008 (1999); arXiv:hep-ph/9812418v3 (1998).

    Article  ADS  Google Scholar 

  31. T. Jacobson, S. Liberati, and D. Mattingly, Phys. Rev. D, 67, 124011 (2003); arXiv:hep-ph/0209264v2 (2002); Ann. Phys., 321, 150–196 (2006); arXiv:astro-ph/0505267v2 (2005).

    Article  ADS  Google Scholar 

  32. M. Galaverni and G. Sigl, Phys. Rev. Lett., 100, 021102 (2008); arXiv:0708.1737v2 [astro-ph] (2007); Phys. Rev. D, 78, 063003 (2008); arXiv:0807.1210v2 [astro-ph] (2008).

    Article  ADS  Google Scholar 

  33. L. Maccione and S. Liberati, JCAP, 08, 027 (2008); arXiv:0805.2548v2 [astro-ph] (2008).

    Article  ADS  Google Scholar 

  34. S. Liberati, L. Maccione, and T. P. Sotiriou, Phys. Rev. Lett., 109, 151602 (2012); arXiv:1207.0670v2 [gr-qc] (2012).

    Article  ADS  Google Scholar 

  35. G. Rubtsov, P. Satunin, and S. Sibiryakov, Phys. Rev. D, 89, 123011 (2014); arXiv:1312.4368v2 [astro-ph.HE] (2013).

    Article  ADS  Google Scholar 

  36. S. Groot Nibbelink, and M. Pospelov, Phys. Rev. Lett., 94, 081601 (2005); arXiv:hep-ph/0404271v4 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  37. P. A. Bolokhov, S. Groot Nibbelink, M. Pospelov, Phys. Rev. D, 72, 015013 (2005); arXiv:hep-ph/0505029v2 (2005).

    Article  ADS  Google Scholar 

  38. O. Pujolàs and S. Sibiryakov, JHEP, 1201, 062 (2012); arXiv:1109.4495v1 [hep-th] (2011).

    Article  ADS  Google Scholar 

  39. D. Redigolo, Phys. Rev. D, 85, 085009 (2012); arXiv:1106.2035v2 [hep-th] (2011).

    Article  ADS  Google Scholar 

  40. E. Kiritsis, JHEP, 1301, 030 (2013); arXiv:1207.2325v2 [hep-th] (2012).

  41. M. Henningson and K. Sfetsos, Phys. Lett. B, 431, 63–68 (1998); arXiv:hep-th/9803251v2 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  42. W. Mück and K. S. Viswanathan, Phys. Rev. D, 58, 106006 (1998); arXiv:hep-th/9805145v2 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  43. M. Henneaux, “Boundary terms in the AdS/CFT correspondence for spinor fields,” in: Mathematical Methods in Modern Theoretical Physics (Tbilisi, Georgia, 5–18 September 1998, M. Eliashvili, G. P. Jorjadze, G. Lavrelashvili, P. Sorba, and A. Tavkhelidze, eds.), Tbilisi Univ. Press, Tbilisi (1999), pp. 161–170; arXiv:hep-th/9902137v1 (1999).

    Google Scholar 

  44. N. Iqbal and H. Liu, Fortsch. Phys., 57, 367–384 (2009); arXiv:0903.2596v3 [hep-th] (2009).

    Article  ADS  Google Scholar 

  45. N. T. Evans, J. Math. Phys., 8, 170–184 (1967).

    Article  ADS  Google Scholar 

  46. G. Mack, Commun. Math. Phys., 55, 1–28 (1977).

    Article  ADS  Google Scholar 

  47. S. Minwalla, Adv. Theor. Math. Phys., 2, 783–851 (1998); arXiv:hep-th/9712074v2 (1997).

    Article  MathSciNet  Google Scholar 

  48. R. Contino and A. Pomarol, JHEP, 0411, 058 (2004); arXiv:hep-th/0406257v2 (2004).

    Article  ADS  Google Scholar 

  49. L. Randall and R. Sundrum, Phys. Rev. Lett., 83, 3370–3373 (1999); arXiv:hep-ph/9905221v1 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  50. S. Kachru, X. Liu, and M. Mulligan, Phys. Rev. D, 78, 106005 (2008); arXiv:0808.1725v2 [hep-th] (2008).

    Article  ADS  MathSciNet  Google Scholar 

  51. M. Taylor, “Non-relativistic holography,” arXiv:0812.0530v1 [hep-th] (2008).

    Google Scholar 

  52. K. Balasubramanian and K. Narayan, JHEP, 1008, 014 (2010); arXiv:1005.3291v3 [hep-th] (2010).

    Article  ADS  Google Scholar 

  53. A. Donos and J. P. Gauntlett, JHEP, 1012, 002 (2010); arXiv:1008.2062v2 [hep-th] (2010).

    Article  ADS  Google Scholar 

  54. R. Gregory, S. L. Parameswaran, G. Tasinato, and I. Zavala, JHEP, 1012, 047 (2010); arXiv:1009.3445v2 [hep-th] (2010).

    Article  ADS  Google Scholar 

  55. D. Cassani and A. F. Faedo, JHEP, 1105, 013 (2011); arXiv:1102.5344v2 [hep-th] (2011).

    Article  ADS  Google Scholar 

  56. H. Braviner, R. Gregory, and S. F. Ross, Class. Q. Grav., 28, 225028 (2011); arXiv:1108.3067v2 [hep-th] (2011).

    Article  ADS  Google Scholar 

  57. T. Appelquist, M. J. Bowick, D. Karabali, and L. C. R. Wijewardhana, Phys. Rev. D, 33, 3774–3776 (1986).

    Article  ADS  Google Scholar 

  58. D. Blas, O. Pujolàs, and S. Sibiryakov, Phys. Lett. B, 688, 350–355 (2010); arXiv:0912.0550v2 [hep-th] (2009).

    Article  ADS  MathSciNet  Google Scholar 

  59. G. Aad et al., New J. Phys., 15, 093011 (2013); arXiv:1308.1364v1 [hep-ex] (2013).

    Article  ADS  Google Scholar 

  60. V. Khachatryan et al. [CMS Collab.], Phys. Lett. B, 738, 274–293 (2014); arXiv:1406.5171v2 [hep-ex] (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kharuk.

Additional information

The research of I. V. Kharuk is supported by the Russian Foundation for Basic Research (Grant No. 14-02-31429).

The research of S. M. Sibiryakov is supported by the Swiss National Science Foundation.

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 189, No. 3, pp. 405–428, December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharuk, I.V., Sibiryakov, S.M. Emergent Lorentz invariance with chiral fermions. Theor Math Phys 189, 1755–1774 (2016). https://doi.org/10.1134/S0040577916120084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577916120084

Keywords

Navigation