T. Appelquist and C.W. Bernard, Strongly interacting Higgs bosons, Phys. Rev. D 22 (1980) 200 [INSPIRE].
ADS
Google Scholar
A.C. Longhitano, Heavy Higgs bosons in the Weinberg-Salam model, Phys. Rev. D 22 (1980) 1166 [INSPIRE].
ADS
Google Scholar
A.C. Longhitano, Low-energy impact of a heavy Higgs boson sector, Nucl. Phys. B 188 (1981) 118 [INSPIRE].
ADS
Article
Google Scholar
M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting W’s and Z’s, Nucl. Phys. B 261 (1985) 379 [INSPIRE].
ADS
Article
Google Scholar
O. Cheyette and M.K. Gaillard, The effective one loop action in the strongly interacting standard electroweak theory, Phys. Lett. B 197 (1987) 205 [INSPIRE].
ADS
Article
Google Scholar
A. Dobado and M.J. Herrero, Phenomenological Lagrangian approach to the symmetry breaking sector of the standard model, Phys. Lett. B 228 (1989) 495 [INSPIRE].
ADS
Article
Google Scholar
A. Dobado and M.J. Herrero, Testing the hypothesis of strongly interacting longitudinal weak bosons in electron-positron collisions at TeV energies, Phys. Lett. B 233 (1989) 505 [INSPIRE].
ADS
Article
Google Scholar
A. Dobado, M.J. Herrero and J. Terron, The role of chiral lagrangians in strongly interacting W (l)W (l) signals at pp supercolliders, Z. Phys. C 50 (1991) 205 [INSPIRE].
Google Scholar
A. Dobado, M.J. Herrero and J. Terron, W ± Z 0 signals from the strongly interacting symmetry breaking sector, Z. Phys. C 50 (1991) 465 [INSPIRE].
Google Scholar
A. Dobado, D. Espriu and M.J. Herrero, Chiral Lagrangians as a tool to probe the symmetry breaking sector of the SM at LEP, Phys. Lett. B 255 (1991) 405 [INSPIRE].
ADS
Article
Google Scholar
D. Espriu and M.J. Herrero, Chiral Lagrangians and precision tests of the symmetry breaking sector of the Standard Model, Nucl. Phys. B 373 (1992) 117 [INSPIRE].
ADS
Article
Google Scholar
F. Feruglio, The chiral approach to the electroweak interactions, Int. J. Mod. Phys. A 8 (1993) 4937 [hep-ph/9301281] [INSPIRE].
A. Dobado et al., Learning about the strongly interacting symmetry breaking sector at LHC, Phys. Lett. B 352 (1995) 400 [hep-ph/9502309] [INSPIRE].
A. Dobado, M.J. Herrero, J.R. Pelaez and E. Ruiz Morales, CERN LHC sensitivity to the resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector, Phys. Rev. D 62 (2000) 055011 [hep-ph/9912224] [INSPIRE].
R. Alonso et al., The effective chiral lagrangian for a light dynamical “Higgs particle”, Phys. Lett. B 722 (2013) 330 [Erratum ibid. B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].
G. Buchalla, O. Catà and C. Krause, Complete electroweak chiral lagrangian with a light Higgs at NLO, Nucl. Phys. B 880 (2014) 552 [Erratum ibid. B 913 (2016) 475] [arXiv:1307.5017] [INSPIRE].
D. Espriu and B. Yencho, Longitudinal WW scattering in light of the “Higgs boson” discovery, Phys. Rev. D 87 (2013) 055017 [arXiv:1212.4158] [INSPIRE].
R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, Light ‘Higgs’, yet strong interactions, J. Phys. G 41 (2014) 025002 [arXiv:1308.1629] [INSPIRE].
R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, One-loop WL WL and ZL ZL scattering from the electroweak chiral Lagrangian with a light Higgs-like scalar, JHEP 02 (2014) 121 [arXiv:1311.5993] [INSPIRE].
ADS
Article
Google Scholar
I. Brivio et al., Disentangling a dynamical Higgs, JHEP 03 (2014) 024 [arXiv:1311.1823] [INSPIRE].
ADS
Article
Google Scholar
D. Espriu, F. Mescia and B. Yencho, Radiative corrections to WL WL scattering in composite Higgs models, Phys. Rev. D 88 (2013) 055002 [arXiv:1307.2400] [INSPIRE].
D. Espriu and F. Mescia, Unitarity and causality constraints in composite Higgs models, Phys. Rev. D 90 (2014) 015035 [arXiv:1403.7386] [INSPIRE].
R.L. Delgado, A. Dobado, M.J. Herrero and J.J. Sanz-Cillero, One-loop γγ → \( {W}_L^{+}{W}_L^{-} \) and γγ → ZL ZL from the electroweak chiral lagrangian with a light Higgs-like scalar, JHEP 07 (2014) 149 [arXiv:1404.2866] [INSPIRE].
ADS
Article
Google Scholar
G. Buchalla, O. Catà, A. Celis and C. Krause, Fitting Higgs data with nonlinear effective theory, Eur. Phys. J. C 76 (2016) 233 [arXiv:1511.00988] [INSPIRE].
ADS
Article
Google Scholar
P. Arnan, D. Espriu and F. Mescia, Interpreting a 2 TeV resonance in WW scattering, Phys. Rev. D 93 (2016) 015020 [arXiv:1508.00174] [INSPIRE].
G. Buchalla et al., Complete one-loop renormalization of the Higgs-electroweak chiral lagrangian, Nucl. Phys. B 928 (2018) 93 [arXiv:1710.06412] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.A. Oller, E. Oset and J.R. Pelaez, Nonperturbative approach to effective chiral Lagrangians and meson interactions, Phys. Rev. Lett. 80 (1998) 3452 [hep-ph/9803242] [INSPIRE].
A. Gomez Nicola and J.R. Pelaez, Meson meson scattering within one loop chiral perturbation theory and its unitarization, Phys. Rev. D 65 (2002) 054009 [hep-ph/0109056] [INSPIRE].
R.L. Delgado et al., Production of vector resonances at the LHC via WZ-scattering: a unitarized EChL analysis, JHEP 11 (2017) 098 [arXiv:1707.04580] [INSPIRE].
ADS
Article
Google Scholar
C. Garcia-Garcia, M. Herrero and R.A. Morales, Unitarization effects in EFT predictions of WZ scattering at the LHC, arXiv:1907.06668 [INSPIRE].
W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].
ADS
Article
Google Scholar
J. Fan, W.D. Goldberger, A. Ross and W. Skiba, Standard model couplings and collider signatures of a light scalar, Phys. Rev. D 79 (2009) 035017 [arXiv:0803.2040] [INSPIRE].
L. Vecchi, Phenomenology of a light scalar: the dilaton, Phys. Rev. D 82 (2010) 076009 [arXiv:1002.1721] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
ADS
Article
Google Scholar
R. Frederix et al., The automation of next-to-leading order electroweak calculations, JHEP 07 (2018) 185 [arXiv:1804.10017] [INSPIRE].
ADS
Article
Google Scholar
R. Aoude and W. Shepherd, Jet substructure measurements of interference in non-interfering SMEFT effects, JHEP 08 (2019) 009 [arXiv:1902.11262] [INSPIRE].
ADS
Article
Google Scholar
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
ADS
Article
Google Scholar
M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the kt jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
ADS
Article
Google Scholar
A. Abdesselam et al., Boosted objects: a probe of beyond the standard model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].
ADS
Article
Google Scholar
J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].
ADS
Article
Google Scholar
J. Thaler and K. Van Tilburg, Maximizing boosted top identification by minimizing N-subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].
ADS
Article
Google Scholar
CMS collaboration, Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 08 (2014) 173 [arXiv:1405.1994] [INSPIRE].
ATLAS collaboration, Identification of boosted, hadronically decaying Wbosons and comparisons with ATLAS data taken at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J. C 76 (2016) 154 [arXiv:1510.05821] [INSPIRE].
ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 12 (2015) 055 [arXiv:1506.00962] [INSPIRE].
J.J. Heinrich, Reconstruction of boosted W ± and Z 0 bosons from fat jets, Master’s thesis, Niels Bohr Institute, Copenhagen, Denmark (2014).
ATLAS collaboration, Search for diboson resonances in hadronic final states in 139 fb−1 of pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 09 (2019) 091 [arXiv:1906.08589] [INSPIRE].