Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
An operational definition of quark and gluon jets
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Going off topics to demix quark and gluon jets in αS extractions

15 February 2023

Matt LeBlanc, Benjamin Nachman & Christof Sauer

Comparison of quark jets with gluon jets and measurement of the coupling constant

26 April 2022

R. Saleh Moghaddam & M. E. Zomorrodian

Systematic quark/gluon identification with ratios of likelihoods

05 December 2022

Samuel Bright-Thonney, Ian Moult, … Stefan Prestel

Energy flow polynomials: a complete linear basis for jet substructure

04 April 2018

Patrick T. Komiske, Eric M. Metodiev & Jesse Thaler

Power counting energy flow polynomials

02 September 2022

Pedro Cal, Jesse Thaler & Wouter J. Waalewijn

A theory of quark vs. gluon discrimination

03 October 2019

Andrew J. Larkoski & Eric M. Metodiev

The Lund jet plane

11 December 2018

Frédéric A. Dreyer, Gavin P. Salam & Grégory Soyez

Quarks and gluons in the Lund plane

18 August 2022

Frédéric A. Dreyer, Gregory Soyez & Adam Takacs

Pulling the Higgs and top needles from the jet stack with feature extended supervised tagging

14 August 2021

J. A. Aguilar-Saavedra

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 08 November 2018

An operational definition of quark and gluon jets

  • Patrick T. Komiske  ORCID: orcid.org/0000-0002-2983-95181,
  • Eric M. Metodiev  ORCID: orcid.org/0000-0002-3995-56861 &
  • Jesse Thaler  ORCID: orcid.org/0000-0002-2406-81601 

Journal of High Energy Physics volume 2018, Article number: 59 (2018) Cite this article

  • 364 Accesses

  • 30 Citations

  • 3 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

While “quark” and “gluon” jets are often treated as separate, well-defined objects in both theoretical and experimental contexts, no precise, practical, and hadron-level definition of jet flavor presently exists. To remedy this issue, we develop and advocate for a data-driven, operational definition of quark and gluon jets that is readily applicable at colliders. Rather than specifying a per-jet flavor label, we aggregately define quark and gluon jets at the distribution level in terms of measured hadronic cross sections. Intuitively, quark and gluon jets emerge as the two maximally separable categories within two jet samples in data. Benefiting from recent work on data-driven classifiers and topic modeling for jets, we show that the practical tools needed to implement our definition already exist for experimental applications. As an informative example, we demonstrate the power of our operational definition using Z+jet and dijet samples, illustrating that pure quark and gluon distributions and fractions can be successfully extracted in a fully well-defined manner.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. M.H. Seymour, Tagging a heavy Higgs boson, in the proceedings of the Large Hadron Collider Workshop, October 4-9, Aachen, Germany (1990).

  2. M.H. Seymour, Searches for new particles using cone and cluster jet algorithms: a comparative study, Z. Phys. C 62 (1994) 127 [INSPIRE].

  3. J.M. Butterworth, B.E. Cox and J.R. Forshaw, W W scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014 [hep-ph/0201098] [INSPIRE].

  4. J.M. Butterworth, J.R. Ellis and A.R. Raklev, Reconstructing sparticle mass spectra using hadronic decays, JHEP 05 (2007) 033 [hep-ph/0702150] [INSPIRE].

  5. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  6. A. Abdesselam et al., Boosted objects: a probe of beyond the standard model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].

  7. A. Altheimer et al., Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].

  8. A. Altheimer et al., Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd-27th of July 2012, Eur. Phys. J. C 74 (2014) 2792 [arXiv:1311.2708] [INSPIRE].

  9. D. Adams et al., Towards an understanding of the correlations in jet substructure, Eur. Phys. J. C 75 (2015) 409 [arXiv:1504.00679] [INSPIRE].

  10. A.J. Larkoski, I. Moult and B. Nachman, Jet substructure at the Large Hadron Collider: a review of recent advances in theory and machine learning, arXiv:1709.04464 [INSPIRE].

  11. L. Asquith et al., Jet substructure at the Large Hadron Collider: experimental review, arXiv:1803.06991 [INSPIRE].

  12. C.F. Berger, T. Kucs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [INSPIRE].

  13. L.G. Almeida et al., Substructure of high-p T jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [INSPIRE].

  14. S.D. Ellis et al., Jet shapes and jet algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [INSPIRE].

    Article  ADS  Google Scholar 

  15. J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J. Thaler and K. Van Tilburg, Maximizing boosted top identification by minimizing N-subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].

    Article  ADS  Google Scholar 

  17. D. Krohn, M.D. Schwartz, T. Lin and W.J. Waalewijn, Jet charge at the LHC, Phys. Rev. Lett. 110 (2013) 212001 [arXiv:1209.2421] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A.J. Larkoski, G.P. Salam and J. Thaler, Energy correlation functions for jet substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. A.J. Larkoski, D. Neill and J. Thaler, Jet shapes with the broadening axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A.J. Larkoski, J. Thaler and W.J. Waalewijn, Gaining (mutual) information about quark/gluon discrimination, JHEP 11 (2014) 129 [arXiv:1408.3122] [INSPIRE].

    Article  ADS  Google Scholar 

  21. I. Moult, L. Necib and J. Thaler, New angles on energy correlation functions, JHEP 12 (2016) 153 [arXiv:1609.07483] [INSPIRE].

    Article  ADS  Google Scholar 

  22. P.T. Komiske, E.M. Metodiev and J. Thaler, Energy flow polynomials: A complete linear basis for jet substructure, JHEP 04 (2018) 013 [arXiv:1712.07124] [INSPIRE].

    Article  Google Scholar 

  23. D. Krohn, J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].

  24. S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination algorithms and jet substructure: pruning as a tool for heavy particle searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].

  25. S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].

  26. M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].

  28. H.P. Nilles and K.H. Streng, Quark-gluon separation in three jet events, Phys. Rev. D 23 (1981) 1944 [INSPIRE].

  29. L.M. Jones, Tests for determining the parton ancestor of a hadron jet, Phys. Rev. D 39 (1989) 2550 [INSPIRE].

  30. Z. Fodor, How to see the differences between quark and gluon jets, Phys. Rev. D 41 (1990) 1726 [INSPIRE].

  31. L. Jones, Towards a systematic jet classification, Phys. Rev. D 42 (1990) 811 [INSPIRE].

  32. L. Lönnblad, C. Peterson and T. Rognvaldsson, Using neural networks to identify jets, Nucl. Phys. B 349 (1991) 675 [INSPIRE].

  33. J. Pumplin, How to tell quark jets from gluon jets, Phys. Rev. D 44 (1991) 2025 [INSPIRE].

  34. J. Gallicchio and M.D. Schwartz, Quark and gluon tagging at the LHC, Phys. Rev. Lett. 107 (2011) 172001 [arXiv:1106.3076] [INSPIRE].

  35. J. Gallicchio and M.D. Schwartz, Quark and gluon jet substructure, JHEP 04 (2013) 090 [arXiv:1211.7038] [INSPIRE].

    Article  ADS  Google Scholar 

  36. B. Bhattacherjee et al., Associated jet and subjet rates in light-quark and gluon jet discrimination, JHEP 04 (2015) 131 [arXiv:1501.04794] [INSPIRE].

    Article  ADS  Google Scholar 

  37. D. Ferreira de Lima, P. Petrov, D. Soper and M. Spannowsky, Quark-gluon tagging with shower deconstruction: unearthing dark matter and Higgs couplings, Phys. Rev. D 95 (2017) 034001 [arXiv:1607.06031] [INSPIRE].

  38. B. Bhattacherjee et al., Quark-gluon discrimination in the search for gluino pair production at the LHC, JHEP 01 (2017) 044 [arXiv:1609.08781] [INSPIRE].

    Article  ADS  Google Scholar 

  39. P.T. Komiske, E.M. Metodiev and M.D. Schwartz, Deep learning in color: towards automated quark/gluon jet discrimination, JHEP 01 (2017) 110 [arXiv:1612.01551] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  40. J. Davighi and P. Harris, Fractal based observables to probe jet substructure of quarks and gluons, Eur. Phys. J. C 78 (2018) 334 [arXiv:1703.00914] [INSPIRE].

  41. T. Cheng, Recursive neural networks in quark/gluon tagging, Comput. Softw. Big Sci. 2 (2018) 3 [arXiv:1711.02633] [INSPIRE].

    Article  Google Scholar 

  42. Y. Sakaki, Quark jet rates and quark/gluon discrimination in multi-jet final states, arXiv:1807.01421 [INSPIRE].

  43. G.P. Salam, Towards jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].

  44. A. Banfi, G.P. Salam and G. Zanderighi, Infrared safe definition of jet flavor, Eur. Phys. J. C 47 (2006) 113 [hep-ph/0601139] [INSPIRE].

  45. A. Buckley and C. Pollard, QCD-aware partonic jet clustering for truth-jet flavour labelling, Eur. Phys. J. C 76 (2016) 71 [arXiv:1507.00508] [INSPIRE].

  46. J. Gallicchio and M.D. Schwartz, Pure samples of quark and gluon jets at the LHC, JHEP 10 (2011) 103 [arXiv:1104.1175] [INSPIRE].

    Article  ADS  Google Scholar 

  47. C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Precision physics with pile-up insensitive observables, arXiv:1603.06375 [INSPIRE].

  48. C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Factorization for groomed jet substructure beyond the next-to-leading logarithm, JHEP 07 (2016) 064 [arXiv:1603.09338] [INSPIRE].

    Article  ADS  Google Scholar 

  49. J.R. Andersen et al., Les Houches 2015: physics at TeV colliders standard model working group report, arXiv:1605.04692 [INSPIRE].

  50. P. Gras et al., Systematics of quark/gluon tagging, JHEP 07 (2017) 091 [arXiv:1704.03878] [INSPIRE].

    Article  ADS  Google Scholar 

  51. CMS collaboration, Performance of quark/gluon discrimination in 8 TeV pp data, CMS-PAS-JME-13-002 (2013).

  52. ATLAS collaboration, Light-quark and gluon jet discrimination in pp collisions at \( \sqrt{s} = 7 \) TeV with the ATLAS detector, Eur. Phys. J. C 74 (2014) 3023 [arXiv:1405.6583] [INSPIRE].

  53. ATLAS collaboration, Measurement of the charged-particle multiplicity inside jets from \( \sqrt{s} = 8 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 76 (2016) 322 [arXiv:1602.00988] [INSPIRE].

  54. CMS collaboration, Performance of quark/gluon discrimination in 13 TeV data, CMS-DP-2016-070 (2016).

  55. ATLAS collaboration, Quark versus gluon jet tagging using charged particle multiplicity with the ATLAS detector, ATL-PHYS-PUB-2017-009 (2017).

  56. CMS collaboration, Measurement of jet substructure observables in tt events from proton-proton collisions at \( \sqrt{s}=13 \) TeV, arXiv:1808.07340 [INSPIRE].

  57. J.H. Collins, K. Howe and B. Nachman, CWoLa hunting: extending the bump hunt with machine learning, arXiv:1805.02664 [INSPIRE].

  58. J.R. Andersen et al., Les Houches 2017: physics at TeV colliders standard model working group report, talk given at the 10th Les Houches Workshop on Physics at TeV Colliders (PhysTeV 2017), June 5-23, Les Houches, France (2018), arXiv:1803.07977 [INSPIRE].

  59. D. Reichelt, P. Richardson and A. Siodmok, Improving the simulation of quark and gluon jets with HERWIG 7, Eur. Phys. J. C 77 (2017) 876 [arXiv:1708.01491] [INSPIRE].

  60. E.M. Metodiev, B. Nachman and J. Thaler, Classification without labels: learning from mixed samples in high energy physics, JHEP 10 (2017) 174 [arXiv:1708.02949] [INSPIRE].

    Article  ADS  Google Scholar 

  61. E.M. Metodiev and J. Thaler, Jet Topics: disentangling quarks and gluons at colliders, Phys. Rev. Lett. 120 (2018) 241602 [arXiv:1802.00008] [INSPIRE].

    Article  ADS  Google Scholar 

  62. J. Neyman and E.S. Pearson, On the problem of the most efficient tests of statistical hypotheses, Phil. Trans. Roy. Soc. London A 231 (1933) 289.

  63. G. Blanchard et al., Classification with asymmetric label noise: Consistency and maximal denoising, Electron. J. Stat. 10 (2016) 2780.

    Article  MathSciNet  MATH  Google Scholar 

  64. T. Cohen, M. Freytsis and B. Ostdiek, (Machine) learning to do more with less, JHEP 02 (2018) 034 [arXiv:1706.09451] [INSPIRE].

  65. P.T. Komiske, E.M. Metodiev, B. Nachman and M.D. Schwartz, Learning to classify from impure samples with high-dimensional data, Phys. Rev. D 98 (2018) 011502 [arXiv:1801.10158] [INSPIRE].

  66. L.M. Dery, B. Nachman, F. Rubbo and A. Schwartzman, Weakly supervised classification in high energy physics, JHEP 05 (2017) 145 [arXiv:1702.00414] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  67. J. Katz-Samuels, G. Blanchard and C. Scott, Decontamination of mutual contamination models, arXiv:1710.01167.

  68. S. Arora, R. Ge and A. Moitra, Learning topic models — Going beyond SVD, in the proceedings of the 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS’12), October 20-23, New Brunswick, U.S.A. (2012).

  69. A. Andreassen, I. Feige, C. Frye and M.D. Schwartz, JUNIPR: a framework for unsupervised machine learning in particle physics, arXiv:1804.09720 [INSPIRE].

  70. CMS collaboration, Studies of jet mass in dijet and W/Z + jet events, JHEP 05 (2013) 090 [arXiv:1303.4811] [INSPIRE].

  71. T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  72. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

  73. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

  74. P.T. Komiske, E.M. Metodiev, B. Nachman and M.D. Schwartz, Pileup Mitigation with Machine Learning (PUMML), JHEP 12 (2017) 051 [arXiv:1707.08600] [INSPIRE].

    Article  ADS  Google Scholar 

  75. S. Chang, T. Cohen and B. Ostdiek, What is the machine learning?, Phys. Rev. D 97 (2018) 056009 [arXiv:1709.10106] [INSPIRE].

  76. T. Roxlo and M. Reece, Opening the black box of neural nets: case studies in stop/top discrimination, arXiv:1804.09278 [INSPIRE].

  77. L. de Oliveira, M. Paganini and B. Nachman, Learning particle physics by example: location-aware generative adversarial networks for physics synthesis, Comput. Softw. Big Sci. 1 (2017) 4 [arXiv:1701.05927] [INSPIRE].

  78. M. Paganini, L. de Oliveira and B. Nachman, Accelerating science with generative adversarial networks: an application to 3D particle showers in multilayer calorimeters, Phys. Rev. Lett. 120 (2018) 042003 [arXiv:1705.02355] [INSPIRE].

  79. M. Paganini, L. de Oliveira and B. Nachman, CaloGAN: simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks, Phys. Rev. D 97 (2018) 014021 [arXiv:1712.10321] [INSPIRE].

  80. R.T. D’Agnolo and A. Wulzer, Learning new physics from a machine, arXiv:1806.02350 [INSPIRE].

  81. K. Fraser and M.D. Schwartz, Jet charge and machine learning, JHEP 10 (2018) 093 [arXiv:1803.08066] [INSPIRE].

    Article  Google Scholar 

  82. C. Frye, A.J. Larkoski, J. Thaler and K. Zhou, Casimir meets Poisson: improved quark/gluon discrimination with counting observables, JHEP 09 (2017) 083 [arXiv:1704.06266] [INSPIRE].

    Article  ADS  Google Scholar 

  83. Fastjet contrib, https://fastjet.hepforge.org/contrib/.

  84. K. Datta and A. Larkoski, How much information is in a jet?, JHEP 06 (2017) 073 [arXiv:1704.08249] [INSPIRE].

    Article  ADS  Google Scholar 

  85. J. Cogan, M. Kagan, E. Strauss and A. Schwarztman, Jet-images: computer vision inspired techniques for jet tagging, JHEP 02 (2015) 118 [arXiv:1407.5675] [INSPIRE].

    Article  ADS  Google Scholar 

  86. L. de Oliveira et al., Jet-images — Deep learning edition, JHEP 07 (2016) 069 [arXiv:1511.05190] [INSPIRE].

    Article  Google Scholar 

  87. P. Baldi et al., Jet substructure classification in high-energy physics with deep neural networks, Phys. Rev. D 93 (2016) 094034 [arXiv:1603.09349] [INSPIRE].

  88. D. Guest et al., Jet flavor classification in high-energy physics with deep neural networks, Phys. Rev. D 94 (2016) 112002 [arXiv:1607.08633] [INSPIRE].

  89. EnergyFlow, https://energyflow.network.

  90. F. Pedregosa et al., Scikit-learn: machine learning in Python, J. Mach. Learning Res. 12 (2011) 2825.

    MathSciNet  MATH  Google Scholar 

  91. G. Louppe, K. Cho, C. Becot and K. Cranmer, QCD-aware recursive neural networks for jet physics, arXiv:1702.00748 [INSPIRE].

  92. A. Butter, G. Kasieczka, T. Plehn and M. Russell, Deep-learned top tagging with a Lorentz layer, SciPost Phys. 5 (2018) 028 [arXiv:1707.08966] [INSPIRE].

    Article  ADS  Google Scholar 

  93. S. Egan et al., Long Short-Term Memory (LSTM) networks with jet constituents for boosted top tagging at the LHC, arXiv:1711.09059 [INSPIRE].

  94. P.T. Komiske, E.M. Metodiev and J. Thaler, Energy flow networks: deep sets for particle jets, arXiv:1810.05165 [INSPIRE].

  95. F. Chollet, Keras, https://github.com/fchollet/keras (2017).

  96. M. Abadi et al., Tensorflow: a system for large-scale machine learning, OSDI 16 (2016) 265.

    Google Scholar 

  97. V. Nair and G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, in the proceedings of the 27th International Conference on Machine learning (ICML-10), June 21-24, Haifa, Israel (2010).

  98. K. He, X. Zhang, S. Ren and J. Sun, Delving deep into rectifiers: surpassing human-level performance on imagenet classification, in the proceedings IEEE International Conference on Computer Vision (ICCV2015), December 11-18, Santiago, Chile (2015).

  99. D.P. Kingma and J. Ba, Adam: a method for stochastic optimization, arXiv:1412.6980 [INSPIRE].

  100. S. Gao, C.H. Lee and J.H. Lim, An ensemble classifier learning approach to ROC optimization, 18th International Conference on Pattern Recognition (ICPR’06), August 20-24, Hong Kong (2006).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Center for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, U.S.A.

    Patrick T. Komiske, Eric M. Metodiev & Jesse Thaler

Authors
  1. Patrick T. Komiske
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Eric M. Metodiev
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Jesse Thaler
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Eric M. Metodiev.

Additional information

ArXiv ePrint: 1809.01140

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Komiske, P.T., Metodiev, E.M. & Thaler, J. An operational definition of quark and gluon jets. J. High Energ. Phys. 2018, 59 (2018). https://doi.org/10.1007/JHEP11(2018)059

Download citation

  • Received: 24 September 2018

  • Revised: 25 October 2018

  • Accepted: 02 November 2018

  • Published: 08 November 2018

  • DOI: https://doi.org/10.1007/JHEP11(2018)059

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Jets
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.