Skip to main content

Black holes in AdS/BCFT and fluid/gravity correspondence

A preprint version of the article is available at arXiv.

Abstract

A proposal to describe gravity duals of conformal theories with boundaries (AdS/BCFT correspondence) was put forward by Takayanagi few years ago. However interesting solutions describing field theories at finite temperature and charge density are still lacking. In this paper we describe a class of theories with boundary, which admit black hole type gravity solutions. The theories are specified by stress-energy tensors that reside on the extensions of the boundary to the bulk. From this perspective AdS/BCFT appears analogous to the fluid/gravity correspondence. Among the class of the boundary extensions there is a special (integrable) one, for which the stress-energy tensor is isotropic. We discuss features of that special solution as well as its thermodynamic properties.

References

  1. S. Hellerman and L. Susskind, Realizing the quantum Hall system in string theory, hep-th/0107200 [INSPIRE].

  2. J.H. Brodie, L. Susskind and N. Toumbas, How Bob Laughlin tamed the giant graviton from Taub-NUT space, JHEP 02 (2001) 003 [hep-th/0010105] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  3. J.H. Brodie, D-branes in massive IIA and solitons in Chern-Simons theory, JHEP 11 (2001) 014 [hep-th/0012068] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  4. O. Bergman, Y. Okawa and J.H. Brodie, The stringy quantum Hall fluid, JHEP 11 (2001) 019 [hep-th/0107178] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. A. Gorsky, I.I. Kogan and C. Korthels-Altes, Dualities in quantum Hall system and noncommutative Chern-Simons theory, JHEP 01 (2002) 002 [hep-th/0111013] [INSPIRE].

    ADS  Article  Google Scholar 

  6. S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D 76 (2007) 066001 [arXiv:0704.1160] [INSPIRE].

    ADS  Google Scholar 

  7. A. O’Bannon, Hall conductivity of flavor fields from AdS/CFT, Phys. Rev. D 76 (2007) 086007 [arXiv:0708.1994] [INSPIRE].

    ADS  Google Scholar 

  8. J.L. Davis, P. Kraus and A. Shah, Gravity dual of a quantum Hall plateau transition, JHEP 11 (2008) 020 [arXiv:0809.1876] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  9. R.C. Myers and M.C. Wapler, Transport properties of holographic defects, JHEP 12 (2008) 115 [arXiv:0811.0480] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  10. M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional quantum Hall effect via holography: Chern-Simons, edge states and hierarchy, JHEP 06 (2009) 066 [arXiv:0901.0924] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  11. J. Alanen, E. Keski-Vakkuri, P. Kraus and V. Suur-Uski, AC transport at holographic quantum Hall transitions, JHEP 11 (2009) 014 [arXiv:0905.4538] [INSPIRE].

    ADS  Article  Google Scholar 

  12. O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Quantum Hall effect in a holographic model, JHEP 10 (2010) 063 [arXiv:1003.4965] [INSPIRE].

    ADS  Article  Google Scholar 

  13. M. Fujita, M. Kaminski and A. Karch, SL(2, Z) action on AdS/BCFT and Hall conductivities, JHEP 07 (2012) 150 [arXiv:1204.0012] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  14. D. Melnikov, E. Orazi and P. Sodano, On the AdS/BCFT approach to quantum Hall systems, JHEP 05 (2013) 116 [arXiv:1211.1416] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  15. D. Arean, M. Bertolini, J. Evslin and T. Prochazka, On holographic superconductors with DC current, JHEP 07 (2010) 060 [arXiv:1003.5661] [INSPIRE].

    ADS  Article  Google Scholar 

  16. G.T. Horowitz, J.E. Santos and B. Way, A holographic Josephson junction, Phys. Rev. Lett. 106 (2011) 221601 [arXiv:1101.3326] [INSPIRE].

    ADS  Article  Google Scholar 

  17. Y.-Q. Wang, Y.-X. Liu and Z.-H. Zhao, Holographic Josephson junction in 3 + 1 dimensions, arXiv:1104.4303 [INSPIRE].

  18. M. Siani, On inhomogeneous holographic superconductors, arXiv:1104.4463 [INSPIRE].

  19. E. Kiritsis and V. Niarchos, Josephson junctions and AdS/CFT networks, JHEP 07 (2011) 112 [Erratum ibid. 1110 (2011) 095] [arXiv:1105.6100] [INSPIRE].

  20. Y.-Q. Wang, Y.-X. Liu and Z.-H. Zhao, Holographic p-wave Josephson junction, arXiv:1109.4426 [INSPIRE].

  21. Y.-Q. Wang, Y.-X. Liu, R.-G. Cai, S. Takeuchi and H.-Q. Zhang, Holographic SIS Josephson junction, JHEP 09 (2012) 058 [arXiv:1205.4406] [INSPIRE].

    ADS  Article  Google Scholar 

  22. S.K. Domokos, C. Hoyos and J. Sonnenschein, Holographic Josephson junctions and Berry holonomy from D-branes, JHEP 10 (2012) 073 [arXiv:1207.2182] [INSPIRE].

    ADS  Article  Google Scholar 

  23. T. Takayanagi, Holographic dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602 [arXiv:1105.5165] [INSPIRE].

    ADS  Article  Google Scholar 

  24. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Cardy, Boundary conformal field theory, hep-th/0411189 [INSPIRE].

  26. M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  27. M. Nozaki, T. Takayanagi and T. Ugajin, Central charges for BCFTs and holography, JHEP 06 (2012) 066 [arXiv:1205.1573] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  28. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

    ADS  Article  Google Scholar 

  29. O. Aharony, D. Marolf and M. Rangamani, Conformal field theories in Anti-de Sitter space, JHEP 02 (2011) 041 [arXiv:1011.6144] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  30. G. Compere and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav. 25 (2008) 195014 [arXiv:0805.1902] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  31. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  32. V. Balasubramanian and Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  33. D. Brattan, J. Camps, R. Loganayagam and M. Rangamani, CFT dual of the AdS dirichlet problem: fluid/gravity on cut-off surfaces, JHEP 12 (2011) 090 [arXiv:1106.2577] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  34. S.A. Bludman and M.A. Ruderman, Possibility of the speed of sound exceeding the speed of light in ultradense matter, Phys. Rev. 170 (1968) 1176 [INSPIRE].

    ADS  Article  Google Scholar 

  35. G. Hayward, Gravitational action for space-times with nonsmooth boundaries, Phys. Rev. D 47 (1993) 3275 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  36. M. Gutperle and J. Samani, Holographic RG-flows and Boundary CFTs, Phys. Rev. D 86 (2012) 106007 [arXiv:1207.7325] [INSPIRE].

    ADS  Google Scholar 

  37. M. Chiodaroli, E. D’Hoker and M. Gutperle, Holographic duals of boundary CFTs, JHEP 07 (2012) 177 [arXiv:1205.5303] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  38. K. Jensen and A. O’Bannon, Holography, entanglement entropy and conformal field theories with boundaries or defects, Phys. Rev. D 88 (2013) 106006 [arXiv:1309.4523] [INSPIRE].

    ADS  Google Scholar 

  39. O.J. Dias, G.T. Horowitz, N. Iqbal and J.E. Santos, Vortices in holographic superfluids and superconductors as conformal defects, JHEP 04 (2014) 096 [arXiv:1311.3673] [INSPIRE].

    ADS  Article  Google Scholar 

  40. Y. Korovin, First order formalism for the holographic duals of defect CFTs, JHEP 04 (2014) 152 [arXiv:1312.0089] [INSPIRE].

    ADS  Article  Google Scholar 

  41. J. Estes, K. Jensen, A. O’Bannon, E. Tsatis and T. Wrase, On holographic defect entropy, JHEP 05 (2014) 084 [arXiv:1403.6475] [INSPIRE].

    ADS  Article  Google Scholar 

  42. S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].

    ADS  Google Scholar 

  43. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    ADS  Article  Google Scholar 

  44. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  45. M. Rangamani, Gravity and hydrodynamics: lectures on the fluid-gravity correspondence, Class. Quant. Grav. 26 (2009) 224003 [arXiv:0905.4352] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  46. V.E. Hubeny, The fluid/gravity correspondence: a new perspective on the membrane paradigm, Class. Quant. Grav. 28 (2011) 114007 [arXiv:1011.4948] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  47. V.E. Hubeny, S. Minwalla and M. Rangamani, The fluid/gravity correspondence, in Black Holes in Higher Dimensions, G. Horowitz ed., Cambridge University Press, Cambridge U.K. (2012).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Melnikov.

Additional information

ArXiv ePrint: 1408.2580

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Magán, J.M., Melnikov, D. & Silva, M.R.O. Black holes in AdS/BCFT and fluid/gravity correspondence. J. High Energ. Phys. 2014, 69 (2014). https://doi.org/10.1007/JHEP11(2014)069

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2014)069

Keywords

  • Black Holes in String Theory
  • AdS-CFT Correspondence