Abstract
We study the defect groups of \( {D}_p^b \)(G) theories using geometric engineering and BPS quivers. In the simple case when b = h∨(G), we use the BPS quivers of the theory to see that the defect group is compatible with a known Maruyoshi-Song flow. To extend to the case where b ≠ h∨(G), we use a similar Maruyoshi-Song flow to conjecture that the defect groups of \( {D}_p^b \)(G) theories are given by those of G(b)[k] theories. In the cases of G = An, E6, E8 we cross check our result by calculating the BPS quivers of the G(b)[k] theories and looking at the cokernel of their intersection matrix.
References
D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].
A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and Duality, JHEP 04 (2014) 001 [arXiv:1401.0740] [INSPIRE].
S. Gukov and A. Kapustin, Topological Quantum Field Theory, Nonlocal Operators, and Gapped Phases of Gauge Theories, arXiv:1307.4793 [INSPIRE].
A. Kapustin and R. Thorngren, Higher symmetry and gapped phases of gauge theories, arXiv:1309.4721 [INSPIRE].
D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS States, Adv. Theor. Math. Phys. 17 (2013) 241 [arXiv:1006.0146] [INSPIRE].
P. Benetti Genolini and L. Tizzano, Instantons, symmetries and anomalies in five dimensions, JHEP 04 (2021) 188 [arXiv:2009.07873] [INSPIRE].
O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge theories, JHEP 08 (2013) 115 [arXiv:1305.0318] [INSPIRE].
I. García Etxebarria, B. Heidenreich and D. Regalado, IIB flux non-commutativity and the global structure of field theories, JHEP 10 (2019) 169 [arXiv:1908.08027] [INSPIRE].
S. Cecotti and M. Del Zotto, Infinitely many N = 2 SCFT with ADE flavor symmetry, JHEP 01 (2013) 191 [arXiv:1210.2886] [INSPIRE].
S. Cecotti, M. Del Zotto and S. Giacomelli, More on the N = 2 superconformal systems of type Dp(G), JHEP 04 (2013) 153 [arXiv:1303.3149] [INSPIRE].
Y. Wang and D. Xie, Classification of Argyres-Douglas theories from M5 branes, Phys. Rev. D 94 (2016) 065012 [arXiv:1509.00847] [INSPIRE].
C. Closset, S. Giacomelli, S. Schäfer-Nameki and Y.-N. Wang, 5d and 4d SCFTs: Canonical Singularities, Trinions and S-Dualities, JHEP 05 (2021) 274 [arXiv:2012.12827] [INSPIRE].
F. Carta, S. Giacomelli, N. Mekareeya and A. Mininno, Conformal manifolds and 3d mirrors of Argyres-Douglas theories, JHEP 08 (2021) 015 [arXiv:2105.08064] [INSPIRE].
S. Giacomelli, RG flows with supersymmetry enhancement and geometric engineering, JHEP 06 (2018) 156 [arXiv:1710.06469] [INSPIRE].
D. Xie, General Argyres-Douglas Theory, JHEP 01 (2013) 100 [arXiv:1204.2270] [INSPIRE].
E. Witten, AdS/CFT correspondence and topological field theory, JHEP 12 (1998) 012 [hep-th/9812012] [INSPIRE].
D.S. Freed, G.W. Moore and G. Segal, The Uncertainty of Fluxes, Commun. Math. Phys. 271 (2007) 247 [hep-th/0605198] [INSPIRE].
D.S. Freed, G.W. Moore and G. Segal, Heisenberg Groups and Noncommutative Fluxes, Annals Phys. 322 (2007) 236 [hep-th/0605200] [INSPIRE].
M. Del Zotto, J.J. Heckman, D.S. Park and T. Rudelius, On the Defect Group of a 6D SCFT, Lett. Math. Phys. 106 (2016) 765 [arXiv:1503.04806] [INSPIRE].
D.R. Morrison, S. Schäfer-Nameki and B. Willett, Higher-Form Symmetries in 5d, JHEP 09 (2020) 024 [arXiv:2005.12296] [INSPIRE].
F. Albertini, M. Del Zotto, I. García Etxebarria and S.S. Hosseini, Higher Form Symmetries and M-theory, JHEP 12 (2020) 203 [arXiv:2005.12831] [INSPIRE].
M. Dierigl, P.-K. Oehlmann and F. Ruehle, Non-Simply-Connected Symmetries in 6D SCFTs, JHEP 10 (2020) 173 [arXiv:2005.12929] [INSPIRE].
M. Del Zotto, I. García Etxebarria and S.S. Hosseini, Higher form symmetries of Argyres-Douglas theories, JHEP 10 (2020) 056 [arXiv:2007.15603] [INSPIRE].
I. Bah, F. Bonetti and R. Minasian, Discrete and higher-form symmetries in SCFTs from wrapped M5-branes, JHEP 03 (2021) 196 [arXiv:2007.15003] [INSPIRE].
C. Closset, S. Schäfer-Nameki and Y.-N. Wang, Coulomb and Higgs Branches from Canonical Singularities. Part 0, JHEP 02 (2021) 003 [arXiv:2007.15600] [INSPIRE].
F. Apruzzi, M. Dierigl and L. Lin, The Fate of Discrete 1-Form Symmetries in 6d, arXiv:2008.09117 [INSPIRE].
L. Bhardwaj and S. Schäfer-Nameki, Higher-form symmetries of 6d and 5d theories, JHEP 02 (2021) 159 [arXiv:2008.09600] [INSPIRE].
S. Gukov, P.-S. Hsin and D. Pei, Generalized global symmetries of T[M] theories. Part I, JHEP 04 (2021) 232 [arXiv:2010.15890] [INSPIRE].
L. Bhardwaj, M. Hubner and S. Schäfer-Nameki, 1-form Symmetries of 4d N = 2 Class S Theories, arXiv:2102.01693 [INSPIRE].
F. Apruzzi, M. van Beest, D.S.W. Gould and S. Schäfer-Nameki, Holography, 1-form symmetries, and confinement, Phys. Rev. D 104 (2021) 066005 [arXiv:2104.12764] [INSPIRE].
F. Apruzzi, L. Bhardwaj, J. Oh and S. Schäfer-Nameki, The Global Form of Flavor Symmetries and 2-Group Symmetries in 5d SCFTs, arXiv:2105.08724 [INSPIRE].
J. Milnor and P. Orlik, Isolated singularities defined by weighted homogeneous polynomials, Topology 9 (1970) 385.
K. Maruyoshi and J. Song, Enhancement of Supersymmetry via Renormalization Group Flow and the Superconformal Index, Phys. Rev. Lett. 118 (2017) 151602 [arXiv:1606.05632] [INSPIRE].
K. Maruyoshi and J. Song, \( \mathcal{N} \) = 1 deformations and RG flows of \( \mathcal{N} \) = 2 SCFTs, JHEP 02 (2017) 075 [arXiv:1607.04281] [INSPIRE].
P. Agarwal, K. Maruyoshi and J. Song, \( \mathcal{N} \) = 1 Deformations and RG flows of \( \mathcal{N} \) = 2 SCFTs. Part II: non-principal deformations, JHEP 12 (2016) 103 [Addendum JHEP 04 (2017) 113] [arXiv:1610.05311] [INSPIRE].
S. Cecotti, A. Neitzke and C. Vafa, R-Twisting and 4d/2d Correspondences, arXiv:1006.3435 [INSPIRE].
D. Xie and S.-T. Yau, 4d N = 2 SCFT and singularity theory. Part I: Classification, arXiv:1510.01324 [INSPIRE].
D. Xie, W. Yan and S.-T. Yau, Chiral algebra of the Argyres-Douglas theory from M5 branes, Phys. Rev. D 103 (2021) 065003 [arXiv:1604.02155] [INSPIRE].
A.M. Gabrielov, Polar Curves and Intersection Matrices of Singularities, Invent. Math. 54 (1979) 15.
N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].
T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].
J. Milnor, Singular Points of Complex Hypersurfaces, Princeton University Press, Princeton NJ U.S.A. (1968).
M. Caorsi and S. Cecotti, Categorical Webs and S-duality in 4d \( \mathcal{N} \) = 2 QFT, Commun. Math. Phys. 368 (2019) 885 [arXiv:1707.08981] [INSPIRE].
P.S. Aspinwall, D-branes on Calabi-Yau manifolds, in proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2003): Recent Trends in String Theory, Boulder, CO, U.S.A., 1–27 June 2003, pp. 1–152 [hep-th/0403166] [INSPIRE].
C.P. Boyer, K. Galicki and S.R. Simanca, The Sasaki cone and extremal Sasakian metrics, in Progress in Mathematics 271, Birkhäuser, Boston MA U.S.A. (2007), pp. 263–290 [INSPIRE].
S. Cecotti and C. Vafa, On classification of N = 2 supersymmetric theories, Commun. Math. Phys. 158 (1993) 569 [hep-th/9211097] [INSPIRE].
S. Giacomelli, N. Mekareeya and M. Sacchi, New aspects of Argyres-Douglas theories and their dimensional reduction, JHEP 03 (2021) 242 [arXiv:2012.12852] [INSPIRE].
M. Del Zotto and R. Moscrop, BPS states and RG flows, to appear.
G. Heckman, Coxeter groups, (2018) and online pdf version at https://www.math.ru.nl/∼heckman/CoxeterGroups.pdf.
M. Reid, Minimal models of canonical 3-folds, in Algebraic Varieties and Analytic Varieties, Mathematical Society of Japan, Tokyo Japan (1983), pp. 131–180.
D.I. Dais, Resolving 3-dimensional toric singularities, math.AG/0110278.
P. Agarwal, A. Sciarappa and J. Song, \( \mathcal{N} \) = 1 Lagrangians for generalized Argyres-Douglas theories, JHEP 10 (2017) 211 [arXiv:1707.04751] [INSPIRE].
S. Benvenuti and S. Giacomelli, Lagrangians for generalized Argyres-Douglas theories, JHEP 10 (2017) 106 [arXiv:1707.05113] [INSPIRE].
F. Carta and A. Mininno, No go for a flow, JHEP 05 (2020) 108 [arXiv:2002.07816] [INSPIRE].
S.S.T. Yau and Y. Yu, Classification of 3-dimensional isolated rational hypersurface singularities with ℂ*-action, math.AG/0303302 [INSPIRE].
W. Ebeling, The Monodromy Groups of Isolated Singularities of Complete Intersections, in Lecture Notes in Mathematics 1293, Springer (1987).
W. Ebeling, Functions of Several Complex Variables and Their Singularities, in Graduate Studies in Mathematics 83, American Mathematical Society, Providence RI U.S.A. (2007).
N.J. Willis, A.K. Didier and K.M. Sonnanburg, How to compute a puiseux expansion, arXiv:0807.4674.
C. Ringel, Tame Algebras and Integral Quadratic Forms, in Lecture Notes in Mathematics 1099, Springer (2006).
S. Cecotti and M. Del Zotto, On Arnold’s 14 ‘exceptional’ N = 2 superconformal gauge theories, JHEP 10 (2011) 099 [arXiv:1107.5747] [INSPIRE].
B. Keller, The Periodicity conjecture for pairs of Dynkin diagrams, arXiv:1001.1531 [INSPIRE].
V.I. Arnold, V.V. Goryunov, O.V. Lyashko and V.A. Vasil’ev, Singularity Theory, in Cambridge Surveys of Economic Literature, Cambridge University Press, Cambridge U.K. (1981).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2106.03878
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Hosseini, S.S., Moscrop, R. Maruyoshi-Song flows and defect groups of \( {\mathrm{D}}_{\mathrm{p}}^{\mathrm{b}} \)(G) theories. J. High Energ. Phys. 2021, 119 (2021). https://doi.org/10.1007/JHEP10(2021)119
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2021)119
Keywords
- Conformal Field Theory
- Global Symmetries