Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Maruyoshi-Song flows and defect groups of \( {\mathrm{D}}_{\mathrm{p}}^{\mathrm{b}} \)(G) theories
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

BFT2: a general class of 2d N $$ \mathcal{N} $$ = (0, 2) theories, 3-manifolds and toric geometry

26 August 2022

Sebastián Franco & Xingyang Yu

Riemann-Hilbert correspondence and blown up surface defects

01 December 2020

Saebyeok Jeong & Nikita Nekrasov

An infrared bootstrap of the Schur index with surface defects

10 September 2019

Martin Fluder & Pietro Longhi

BPS relations from spectral problems and blowup equations

20 February 2019

Alba Grassi & Jie Gu

Seiberg-Witten geometry, modular rational elliptic surfaces and BPS quivers

24 May 2022

Horia Magureanu

Truncated Affine Rozansky–Witten Models as Extended TQFTs

13 February 2023

Ilka Brunner, Nils Carqueville & Daniel Roggenkamp

Defects, nested instantons and comet-shaped quivers

11 March 2021

G. Bonelli, N. Fasola & A. Tanzini

Quiver Symmetries and Wall-Crossing Invariance

19 November 2022

Fabrizio Del Monte & Pietro Longhi

Intersecting defects in gauge theory, quantum spin chains, and Knizhnik-Zamolodchikov equations

15 October 2021

Saebyeok Jeong, Norton Lee & Nikita Nekrasov

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 15 October 2021

Maruyoshi-Song flows and defect groups of \( {\mathrm{D}}_{\mathrm{p}}^{\mathrm{b}} \)(G) theories

  • Saghar S. Hosseini  ORCID: orcid.org/0000-0002-9098-01661 &
  • Robert Moscrop  ORCID: orcid.org/0000-0001-8799-78242 

Journal of High Energy Physics volume 2021, Article number: 119 (2021) Cite this article

  • 81 Accesses

  • 12 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We study the defect groups of \( {D}_p^b \)(G) theories using geometric engineering and BPS quivers. In the simple case when b = h∨(G), we use the BPS quivers of the theory to see that the defect group is compatible with a known Maruyoshi-Song flow. To extend to the case where b ≠ h∨(G), we use a similar Maruyoshi-Song flow to conjecture that the defect groups of \( {D}_p^b \)(G) theories are given by those of G(b)[k] theories. In the cases of G = An, E6, E8 we cross check our result by calculating the BPS quivers of the G(b)[k] theories and looking at the cokernel of their intersection matrix.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and Duality, JHEP 04 (2014) 001 [arXiv:1401.0740] [INSPIRE].

    Article  ADS  Google Scholar 

  3. S. Gukov and A. Kapustin, Topological Quantum Field Theory, Nonlocal Operators, and Gapped Phases of Gauge Theories, arXiv:1307.4793 [INSPIRE].

  4. A. Kapustin and R. Thorngren, Higher symmetry and gapped phases of gauge theories, arXiv:1309.4721 [INSPIRE].

  5. D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS States, Adv. Theor. Math. Phys. 17 (2013) 241 [arXiv:1006.0146] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  6. P. Benetti Genolini and L. Tizzano, Instantons, symmetries and anomalies in five dimensions, JHEP 04 (2021) 188 [arXiv:2009.07873] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge theories, JHEP 08 (2013) 115 [arXiv:1305.0318] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. I. García Etxebarria, B. Heidenreich and D. Regalado, IIB flux non-commutativity and the global structure of field theories, JHEP 10 (2019) 169 [arXiv:1908.08027] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  9. S. Cecotti and M. Del Zotto, Infinitely many N = 2 SCFT with ADE flavor symmetry, JHEP 01 (2013) 191 [arXiv:1210.2886] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Cecotti, M. Del Zotto and S. Giacomelli, More on the N = 2 superconformal systems of type Dp(G), JHEP 04 (2013) 153 [arXiv:1303.3149] [INSPIRE].

    Article  ADS  Google Scholar 

  11. Y. Wang and D. Xie, Classification of Argyres-Douglas theories from M5 branes, Phys. Rev. D 94 (2016) 065012 [arXiv:1509.00847] [INSPIRE].

  12. C. Closset, S. Giacomelli, S. Schäfer-Nameki and Y.-N. Wang, 5d and 4d SCFTs: Canonical Singularities, Trinions and S-Dualities, JHEP 05 (2021) 274 [arXiv:2012.12827] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. F. Carta, S. Giacomelli, N. Mekareeya and A. Mininno, Conformal manifolds and 3d mirrors of Argyres-Douglas theories, JHEP 08 (2021) 015 [arXiv:2105.08064] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Giacomelli, RG flows with supersymmetry enhancement and geometric engineering, JHEP 06 (2018) 156 [arXiv:1710.06469] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Xie, General Argyres-Douglas Theory, JHEP 01 (2013) 100 [arXiv:1204.2270] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. E. Witten, AdS/CFT correspondence and topological field theory, JHEP 12 (1998) 012 [hep-th/9812012] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. D.S. Freed, G.W. Moore and G. Segal, The Uncertainty of Fluxes, Commun. Math. Phys. 271 (2007) 247 [hep-th/0605198] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. D.S. Freed, G.W. Moore and G. Segal, Heisenberg Groups and Noncommutative Fluxes, Annals Phys. 322 (2007) 236 [hep-th/0605200] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Del Zotto, J.J. Heckman, D.S. Park and T. Rudelius, On the Defect Group of a 6D SCFT, Lett. Math. Phys. 106 (2016) 765 [arXiv:1503.04806] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. D.R. Morrison, S. Schäfer-Nameki and B. Willett, Higher-Form Symmetries in 5d, JHEP 09 (2020) 024 [arXiv:2005.12296] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. F. Albertini, M. Del Zotto, I. García Etxebarria and S.S. Hosseini, Higher Form Symmetries and M-theory, JHEP 12 (2020) 203 [arXiv:2005.12831] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Dierigl, P.-K. Oehlmann and F. Ruehle, Non-Simply-Connected Symmetries in 6D SCFTs, JHEP 10 (2020) 173 [arXiv:2005.12929] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Del Zotto, I. García Etxebarria and S.S. Hosseini, Higher form symmetries of Argyres-Douglas theories, JHEP 10 (2020) 056 [arXiv:2007.15603] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  24. I. Bah, F. Bonetti and R. Minasian, Discrete and higher-form symmetries in SCFTs from wrapped M5-branes, JHEP 03 (2021) 196 [arXiv:2007.15003] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. C. Closset, S. Schäfer-Nameki and Y.-N. Wang, Coulomb and Higgs Branches from Canonical Singularities. Part 0, JHEP 02 (2021) 003 [arXiv:2007.15600] [INSPIRE].

  26. F. Apruzzi, M. Dierigl and L. Lin, The Fate of Discrete 1-Form Symmetries in 6d, arXiv:2008.09117 [INSPIRE].

  27. L. Bhardwaj and S. Schäfer-Nameki, Higher-form symmetries of 6d and 5d theories, JHEP 02 (2021) 159 [arXiv:2008.09600] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Gukov, P.-S. Hsin and D. Pei, Generalized global symmetries of T[M] theories. Part I, JHEP 04 (2021) 232 [arXiv:2010.15890] [INSPIRE].

  29. L. Bhardwaj, M. Hubner and S. Schäfer-Nameki, 1-form Symmetries of 4d N = 2 Class S Theories, arXiv:2102.01693 [INSPIRE].

  30. F. Apruzzi, M. van Beest, D.S.W. Gould and S. Schäfer-Nameki, Holography, 1-form symmetries, and confinement, Phys. Rev. D 104 (2021) 066005 [arXiv:2104.12764] [INSPIRE].

  31. F. Apruzzi, L. Bhardwaj, J. Oh and S. Schäfer-Nameki, The Global Form of Flavor Symmetries and 2-Group Symmetries in 5d SCFTs, arXiv:2105.08724 [INSPIRE].

  32. J. Milnor and P. Orlik, Isolated singularities defined by weighted homogeneous polynomials, Topology 9 (1970) 385.

    Article  MathSciNet  Google Scholar 

  33. K. Maruyoshi and J. Song, Enhancement of Supersymmetry via Renormalization Group Flow and the Superconformal Index, Phys. Rev. Lett. 118 (2017) 151602 [arXiv:1606.05632] [INSPIRE].

    Article  ADS  Google Scholar 

  34. K. Maruyoshi and J. Song, \( \mathcal{N} \) = 1 deformations and RG flows of \( \mathcal{N} \) = 2 SCFTs, JHEP 02 (2017) 075 [arXiv:1607.04281] [INSPIRE].

  35. P. Agarwal, K. Maruyoshi and J. Song, \( \mathcal{N} \) = 1 Deformations and RG flows of \( \mathcal{N} \) = 2 SCFTs. Part II: non-principal deformations, JHEP 12 (2016) 103 [Addendum JHEP 04 (2017) 113] [arXiv:1610.05311] [INSPIRE].

  36. S. Cecotti, A. Neitzke and C. Vafa, R-Twisting and 4d/2d Correspondences, arXiv:1006.3435 [INSPIRE].

  37. D. Xie and S.-T. Yau, 4d N = 2 SCFT and singularity theory. Part I: Classification, arXiv:1510.01324 [INSPIRE].

  38. D. Xie, W. Yan and S.-T. Yau, Chiral algebra of the Argyres-Douglas theory from M5 branes, Phys. Rev. D 103 (2021) 065003 [arXiv:1604.02155] [INSPIRE].

  39. A.M. Gabrielov, Polar Curves and Intersection Matrices of Singularities, Invent. Math. 54 (1979) 15.

    Article  ADS  MathSciNet  Google Scholar 

  40. N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

  42. J. Milnor, Singular Points of Complex Hypersurfaces, Princeton University Press, Princeton NJ U.S.A. (1968).

    MATH  Google Scholar 

  43. M. Caorsi and S. Cecotti, Categorical Webs and S-duality in 4d \( \mathcal{N} \) = 2 QFT, Commun. Math. Phys. 368 (2019) 885 [arXiv:1707.08981] [INSPIRE].

  44. P.S. Aspinwall, D-branes on Calabi-Yau manifolds, in proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2003): Recent Trends in String Theory, Boulder, CO, U.S.A., 1–27 June 2003, pp. 1–152 [hep-th/0403166] [INSPIRE].

  45. C.P. Boyer, K. Galicki and S.R. Simanca, The Sasaki cone and extremal Sasakian metrics, in Progress in Mathematics 271, Birkhäuser, Boston MA U.S.A. (2007), pp. 263–290 [INSPIRE].

  46. S. Cecotti and C. Vafa, On classification of N = 2 supersymmetric theories, Commun. Math. Phys. 158 (1993) 569 [hep-th/9211097] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. S. Giacomelli, N. Mekareeya and M. Sacchi, New aspects of Argyres-Douglas theories and their dimensional reduction, JHEP 03 (2021) 242 [arXiv:2012.12852] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. M. Del Zotto and R. Moscrop, BPS states and RG flows, to appear.

  49. G. Heckman, Coxeter groups, (2018) and online pdf version at https://www.math.ru.nl/∼heckman/CoxeterGroups.pdf.

  50. M. Reid, Minimal models of canonical 3-folds, in Algebraic Varieties and Analytic Varieties, Mathematical Society of Japan, Tokyo Japan (1983), pp. 131–180.

  51. D.I. Dais, Resolving 3-dimensional toric singularities, math.AG/0110278.

  52. P. Agarwal, A. Sciarappa and J. Song, \( \mathcal{N} \) = 1 Lagrangians for generalized Argyres-Douglas theories, JHEP 10 (2017) 211 [arXiv:1707.04751] [INSPIRE].

  53. S. Benvenuti and S. Giacomelli, Lagrangians for generalized Argyres-Douglas theories, JHEP 10 (2017) 106 [arXiv:1707.05113] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  54. F. Carta and A. Mininno, No go for a flow, JHEP 05 (2020) 108 [arXiv:2002.07816] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. S.S.T. Yau and Y. Yu, Classification of 3-dimensional isolated rational hypersurface singularities with ℂ*-action, math.AG/0303302 [INSPIRE].

  56. W. Ebeling, The Monodromy Groups of Isolated Singularities of Complete Intersections, in Lecture Notes in Mathematics 1293, Springer (1987).

  57. W. Ebeling, Functions of Several Complex Variables and Their Singularities, in Graduate Studies in Mathematics 83, American Mathematical Society, Providence RI U.S.A. (2007).

  58. N.J. Willis, A.K. Didier and K.M. Sonnanburg, How to compute a puiseux expansion, arXiv:0807.4674.

  59. C. Ringel, Tame Algebras and Integral Quadratic Forms, in Lecture Notes in Mathematics 1099, Springer (2006).

  60. S. Cecotti and M. Del Zotto, On Arnold’s 14 ‘exceptional’ N = 2 superconformal gauge theories, JHEP 10 (2011) 099 [arXiv:1107.5747] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  61. B. Keller, The Periodicity conjecture for pairs of Dynkin diagrams, arXiv:1001.1531 [INSPIRE].

  62. V.I. Arnold, V.V. Goryunov, O.V. Lyashko and V.A. Vasil’ev, Singularity Theory, in Cambridge Surveys of Economic Literature, Cambridge University Press, Cambridge U.K. (1981).

Download references

Author information

Authors and Affiliations

  1. Department of Mathematical Sciences, Durham University, Stockton Road, Durham, DH1 3LE, U.K.

    Saghar S. Hosseini

  2. Department of Mathematics, Uppsala University, Box 480, SE-75106, Uppsala, Sweden

    Robert Moscrop

Authors
  1. Saghar S. Hosseini
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Robert Moscrop
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Saghar S. Hosseini.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2106.03878

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S.S., Moscrop, R. Maruyoshi-Song flows and defect groups of \( {\mathrm{D}}_{\mathrm{p}}^{\mathrm{b}} \)(G) theories. J. High Energ. Phys. 2021, 119 (2021). https://doi.org/10.1007/JHEP10(2021)119

Download citation

  • Received: 16 August 2021

  • Accepted: 22 September 2021

  • Published: 15 October 2021

  • DOI: https://doi.org/10.1007/JHEP10(2021)119

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal Field Theory
  • Global Symmetries
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.