Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Go to cart
  1. Home
  2. Journal of High Energy Physics
  3. Article
An alternative path integral for quantum gravity
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

T T ¯ $$ T\overline{T} $$ + Λ2 from a 2d gravity path integral

30 January 2023

Gonzalo Torroba

Wave Function of the Universe, Path Integrals and Gauge Invariance

01 October 2019

T. P. Shestakova

Gravity as an ensemble and the moment problem

30 June 2021

Oliver Janssen, Mehrdad Mirbabayi & Peter Zograf

Gravitational thermodynamics without the conformal factor problem: partition functions and Euclidean saddles from Lorentzian path integrals

18 July 2022

Donald Marolf

Heat kernel: Proper-time method, Fock–Schwinger gauge, path integral, and Wilson line

24 November 2020

A. V. Ivanov & N. V. Kharuk

Semiclassical 3D gravity as an average of large-c CFTs

13 December 2022

Jeevan Chandra, Scott Collier, … Alexander Maloney

Path integrals in quadratic gravity

14 February 2022

Vladimir V. Belokurov & Evgeniy T. Shavgulidze

Dual path integral: a non-perturbative approach to strong coupling

17 March 2021

Vitaly Vanchurin

Quantum phenomenological gravitational dynamics: a general view from thermodynamics of spacetime

30 December 2020

A. Alonso-Serrano & M. Liška

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 10 October 2016

An alternative path integral for quantum gravity

  • Chethan Krishnan1,
  • K. V. Pavan Kumar1 &
  • Avinash Raju1 

Journal of High Energy Physics volume 2016, Article number: 43 (2016) Cite this article

  • 327 Accesses

  • 19 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We define a (semi-classical) path integral for gravity with Neumann boundary conditions in D dimensions, and show how to relate this new partition function to the usual picture of Euclidean quantum gravity. We also write down the action in ADM Hamiltonian formulation and use it to reproduce the entropy of black holes and cosmological horizons. A comparison between the (background-subtracted) covariant and Hamiltonian ways of semi-classically evaluating this path integral in flat space reproduces the generalized Smarr formula and the first law. This “Neumann ensemble” perspective on gravitational thermodynamics is parallel to the canonical (Dirichlet) ensemble of Gibbons-Hawking and the microcanonical approach of Brown-York.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. S. Carlip, Quantum gravity in 2+1 dimensions, Cambridge University Press, Cambridge U.K. (1998).

    Book  MATH  Google Scholar 

  2. C. Krishnan, Quantum Field Theory, Black Holes and Holography, arXiv:1011.5875 [INSPIRE].

  3. G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. C. Krishnan, A. Raju and P.N.B. Subramanian, A Dynamical Boundary for Anti-de Sitter Space, arXiv:1609.06300 [INSPIRE].

  6. J.W. York Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett. 28 (1972) 1082 [INSPIRE].

    Article  ADS  Google Scholar 

  7. C. Krishnan and A. Raju, A Neumann Boundary Term for Gravity, arXiv:1605.01603 [INSPIRE].

  8. J.D. Brown and J.W. York Jr., The Microcanonical functional integral. 1. The Gravitational field, Phys. Rev. D 47 (1993) 1420 [gr-qc/9209014] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  9. J.D. Brown and J.W. York Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  10. S. Detournay, D. Grumiller, F. Schöller and J. Simón, Variational principle and one-point functions in three-dimensional flat space Einstein gravity, Phys. Rev. D 89 (2014) 084061 [arXiv:1402.3687] [INSPIRE].

    ADS  Google Scholar 

  11. K. Parattu, S. Chakraborty, B.R. Majhi and T. Padmanabhan, A Boundary Term for the Gravitational Action with Null Boundaries, Gen. Rel. Grav. 48 (2016) 94 [arXiv:1501.01053] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. K. Parattu, S. Chakraborty and T. Padmanabhan, Variational Principle for Gravity with Null and Non-null boundaries: A Unified Boundary Counter-term, Eur. Phys. J. C 76 (2016) 129 [arXiv:1602.07546] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Chakraborty, Boundary terms of the Einstein-Hilbert action, arXiv:1607.05986 [INSPIRE].

  14. P. van Nieuwenhuizen and D.V. Vassilevich, Consistent boundary conditions for supergravity, Class. Quant. Grav. 22 (2005) 5029 [hep-th/0507172] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. I.Y. Park, Holographic quantization of gravity in a black hole background, J. Math. Phys. 57 (2016) 022305 [arXiv:1508.03874] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. I.Y. Park, Reduction of gravity-matter and dS gravity to hypersurface, arXiv:1512.08060 [INSPIRE].

  17. D. Grumiller, R.B. Mann and R. McNees, Dirichlet boundary value problem for Chern-Simons modified gravity, Phys. Rev. D 78 (2008) 081502 [arXiv:0803.1485] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. D. Grumiller, M. Irakleidou, I. Lovrekovic and R. McNees, Conformal gravity holography in four dimensions, Phys. Rev. Lett. 112 (2014) 111102 [arXiv:1310.0819] [INSPIRE].

    Article  ADS  Google Scholar 

  19. P. Basu, C. Krishnan and P.N.B. Subramanian, Hairy Black Holes in a Box, arXiv:1609.01208 [INSPIRE].

  20. G. Compere and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav. 25 (2008) 195014 [arXiv:0805.1902] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. P. Mora, R. Olea, R. Troncoso and J. Zanelli, Finite action principle for Chern-Simons AdS gravity, JHEP 06 (2004) 036 [hep-th/0405267] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043 [arXiv:1108.5152] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics, Cambridge University Press, Cambridge U.K. (2004).

    Book  MATH  Google Scholar 

  24. S. Carlip, M. Clements, S. Della Pietra and V. Della Pietra, Sewing Polyakov Amplitudes. 1. Sewing at a fixed conformal structure, Commun. Math. Phys. 127 (1990) 253 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. E. Witten, On Holomorphic factorization of WZW and coset models, Commun. Math. Phys. 144 (1992) 189 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. A.W. Peet, TASI lectures on black holes in string theory, hep-th/0008241 [INSPIRE].

  27. http://www.hartmanhep.net/topics2015/7-deSitterv2.pdf.

  28. R. Bousso, Adventures in de Sitter space, hep-th/0205177 [INSPIRE].

  29. M. Chaichian and I. Senda, Quantum field theory at finite energy, Nucl. Phys. B 396 (1993) 737 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. J.D. Brown, E.A. Martinez and J.W. York Jr., Complex Kerr-Newman geometry and black hole thermodynamics, Phys. Rev. Lett. 66 (1991) 2281 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. S.W. Hawking, C.J. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev. D 59 (1999) 064005 [hep-th/9811056] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  33. C. Krishnan, Tomograms of Spinning Black Holes, Phys. Rev. D 80 (2009) 126014 [arXiv:0911.0597] [INSPIRE].

    ADS  Google Scholar 

  34. B.S. Kay and R.M. Wald, Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasifree States on Space-Times with a Bifurcate Killing Horizon, Phys. Rept. 207 (1991) 49 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. C. Krishnan, Black Hole Vacua and Rotation, Nucl. Phys. B 848 (2011) 268 [arXiv:1005.1629] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Center for High Energy Physics, Indian Institute of Science, Bangalore, 560012, India

    Chethan Krishnan, K. V. Pavan Kumar & Avinash Raju

Authors
  1. Chethan Krishnan
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. K. V. Pavan Kumar
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Avinash Raju
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Avinash Raju.

Additional information

ArXiv ePrint: 1609.04719

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, C., Kumar, K.V.P. & Raju, A. An alternative path integral for quantum gravity. J. High Energ. Phys. 2016, 43 (2016). https://doi.org/10.1007/JHEP10(2016)043

Download citation

  • Received: 16 September 2016

  • Revised: 06 October 2016

  • Accepted: 10 October 2016

  • Published: 10 October 2016

  • DOI: https://doi.org/10.1007/JHEP10(2016)043

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Black Holes
  • Classical Theories of Gravity
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature